| [1] |
Liu HC, Ding TT, Zhan Y, et al. A novel AXIN2 missense mutation is associated with non-syndromic oligodontia[J]. PLoS One, 2015, 10(9): e0138221.
doi: 10.1371/journal.pone.0138221
|
| [2] |
Matalova E, Fleischmannova J, Sharpe PT, et al. Tooth agenesis: From molecular genetics to molecular dentistry[J]. J Dent Res, 2008, 87(7): 617-623.
doi: 10.1177/154405910808700715
pmid: 18573979
|
| [3] |
Dinckan N, Du RQ, Akdemir ZC, et al. A biallelicANTXR1 variant expands the Anthrax toxin receptor associated phenotype to tooth agenesis[J]. American J Med Genetics Pt A, 2018, 176(4): 1015-1022.
doi: 10.1002/ajmg.a.v176.4
|
| [4] |
Das P, Stockton DW, Bauer C, et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia[J]. Hum Genet, 2002, 110(4): 371-376.
doi: 10.1007/s00439-002-0699-1
pmid: 11941488
|
| [5] |
Filius MAP, Cune MS, Créton M, et al. Oral health-related quality of life in Dutch children diagnosed with oligodontia. A cross-sectional study[J]. Int J Environ Res Public Health, 2019, 16(13): 2371.
doi: 10.3390/ijerph16132371
|
| [6] |
Zheng JL, Yu M, Liu HC, et al. Novel MSX1 variants identified in families with nonsyndromic oligodontia[J]. Int J Oral Sci, 2021, 13: 2.
doi: 10.1038/s41368-020-00106-0
pmid: 33419968
|
| [7] |
Kim R, Yu TS, Li JJ, et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development[J]. Development, 2021, 148(14): dev199685.
|
| [8] |
Wang Y, Li L, Zheng Y, et al. BMP activity is required for tooth development from the Lamina to bud stage[J]. J Dent Res, 2012, 91(7): 690-695.
doi: 10.1177/0022034512448660
pmid: 22592126
|
| [9] |
Gao YZ, Jiang XH, Wei Z, et al. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective[J]. Front Genet, 2023, 14: 1168538.
doi: 10.3389/fgene.2023.1168538
|
| [10] |
Dalton CJ, Lemmon CA. Fibronectin: Molecular structure, fibrillarstructure and mechanochemical signaling[J]. Cells, 2021, 10(9): 2443.
doi: 10.3390/cells10092443
|
| [11] |
Roel-Touris J, Carcelén L, Marcos E. The structural landscape of the immunoglobulin fold by large-scale de novo design[J]. Protein Sci, 2024, 33(4): e4936.
doi: 10.1002/pro.4936
pmid: 38501461
|
| [12] |
Alghadeer A, Hanson-Drury S, Patni AP, et al. Single-cell census of human tooth development enables generation of human enamel[J]. Dev Cell, 2023, 58(20): 2163-2180.e9.
doi: 10.1016/j.devcel.2023.07.013
pmid: 37582367
|
| [13] |
Zhang R, Shen ZS, Zhao ZN, et al. Integrated multi-omics profiling characterizes the crucial role of human dental epithelium during tooth development[J]. Cell Rep, 2025, 44(4): 115437.
doi: 10.1016/j.celrep.2025.115437
|
| [14] |
Jing JJ, Feng JF, Yuan Y, et al. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis[J]. Nat Commun, 2022, 13: 4803.
doi: 10.1038/s41467-022-32490-y
pmid: 35974052
|
| [15] |
Bartlett JD. Dental enamel development: Proteinases and their enamel matrix substrates[J]. ISRN Dent, 2013, 2013: 684607.
|
| [16] |
Duan PP, Bonewald LF. The role of the Wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth[J]. Int J Biochem Cell Biol, 2016, 77: 23-29.
doi: S1357-2725(16)30121-2
pmid: 27210503
|
| [17] |
Hosoya A, Shalehin N, Takebe H, et al. Sonic hedgehog signaling and tooth development[J]. Int J Mol Sci, 2020, 21(5): 1587.
doi: 10.3390/ijms21051587
|
| [18] |
Letra A. Rethinking the genetic etiology of nonsyndromic tooth agenesis[J]. Curr Osteoporos Rep, 2022, 20(6): 389-397.
doi: 10.1007/s11914-022-00761-8
pmid: 36378475
|
| [19] |
Pei F, Guo TW, Zhang MY, et al. FGF signaling modulates mechanotransduction/WNT signaling in progenitors during tooth root development[J]. Bone Res, 2024, 12: 37.
doi: 10.1038/s41413-024-00345-5
pmid: 38910207
|
| [20] |
Herman DS, Lam L, Taylor MRG, et al. Truncations of titin causing dilated cardiomyopathy[J]. N Engl J Med, 2012, 366(7): 619-628.
doi: 10.1056/NEJMoa1110186
|
| [21] |
Kim Y, Kim SW, Saul D, et al. Regulation of sarcomere formation and function in the healthy heart requires a titin intronic enhancer[J]. J Clin Investig, 2025, 135(4): e183353.
doi: 10.1172/JCI183353
|
| [22] |
Töpf A, Cox D, Zaharieva IT, et al. Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy[J]. Nat Genet, 2024, 56(3): 395-407.
doi: 10.1038/s41588-023-01651-0
pmid: 38429495
|
| [23] |
Taherkhani A, IraniS, Najafi A, et al. Molecular architecture of human tooth development: A network-based analysis of gene expression[J]. Hum Gene, 2025, 44: 201398.
doi: 10.1016/j.humgen.2025.201398
|
| [24] |
Courbot O, Elosegui-Artola A. The role of extracellular matrix viscoelasticity in development and disease[J]. NPJ Biol Phys Mech, 2025, 2: 10.
doi: 10.1038/s44341-025-00014-6
|
| [25] |
Zhang ZW, Hu H, Xu ZH, et al. A chemically defined culture for tooth reconstitution[J]. Adv Sci, 2025, 12(3):2404345.
doi: 10.1002/advs.v12.3
|
| [26] |
Goto A, Komura S, Kato K, et al. PI3K-Akt signalling regulates Scx-lineage tenocytes and Tppp3-lineage paratenon sheath cells in neonatal tendon regeneration[J]. Nat Commun, 2025, 16: 3734.
doi: 10.1038/s41467-025-59010-y
|
| [27] |
Yang YQ, Jiang C, Zeng JK, et al. hsa_circ_0001599 promotes odontogenic differentiation of human dental pulp stem cells by increasing ITGA2 expression and stability[J]. Commun Biol, 2025, 8: 74.
doi: 10.1038/s42003-025-07488-z
pmid: 39825107
|
| [28] |
Wang YL, Li HT, Yang XQ, et al. The role of the PI3K/Akt pathway in adenosine’s mechanism of action in osteoporosis with oxidative stress: A wet-dry experimental approach strategy[J]. J Funct Foods, 2024, 120: 106366.
doi: 10.1016/j.jff.2024.106366
|
| [29] |
Kramer K, Chavez MB, Tran AT, et al. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations[J]. Bone, 2021, 143: 115732.
doi: 10.1016/j.bone.2020.115732
|