[1] |
Shah FA, Thomsen P, Palmquist A.Osseointegration and current interpretations of the bone-implant interface[J]. Acta Biomater, 2019, 84: 1-15.
|
[2] |
Nelogi SY, Nelogi M.In vitro evaluation of cytomechanics of osteoblast and fibroblast cell line for enhanced peri-implant bone and soft tissue engineering[J]. Clin Oral Impl Res, 2018, 29: 61.
|
[3] |
陈伯嘉, 李娟娟, 欧国敏.牙种植体颈部软组织附着的研究进展[J].国际口腔医学杂志, 2013, 40(4):496-499
|
[4] |
陈伯嘉, 李娟娟, 欧国敏.牙种植体颈部软组织附着的研究进展[J].国际口腔医学杂志, 2013, 40(4):496-499
|
[5] |
Fr?jd V, Chávez de Paz L, Andersson M, et al.In situ analysis of multispecies biofilm formation on customized titanium surfaces[J].Mol Oral Microbiol, 2011, 26(4):241-252
|
[6] |
Fr?jd V, Chávez de Paz L, Andersson M, et al.In situ analysis of multispecies biofilm formation on customized titanium surfaces[J].Mol Oral Microbiol, 2011, 26(4):241-252
|
[7] |
Zarandi A, Novin M.Marginal bone loss around platform-switched and non-platform switched implants after two years of placement: a clinical trial[J].J Dent Res Dent Clin Dent Prospects, 2017, 11(1):26-29
|
[8] |
Todescan FF, Pustiglioni FE, Imbronito AV, et al.Influence of the microgap in the peri-implant hard and soft tissues: a histomorphometric study in dogs[J].Int J Oral Maxillofac Implants, 2002, 17(4):467-472
|
[9] |
de Siqueira RAC, Font?o FNGK, Sartori IAM, et al.Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a randomized clinical trial[J].Clin Oral Implants Res, 2017, 28(10):1227-1233
|
[10] |
Negri B, López Marí M, Maté Sánchez de Val JE, et al.Biological width formation to immediate implants placed at different level in relation to the crestal bone: an experimental study in dogs[J].Clin Oral Implants Res, 2015, 26(7):788-798
|
[11] |
Alikhani Chamgordani S, Miresmaeili R, Aliofkhazraei M.Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT)[J]. Tribol Int, 2018, 119: 744-752.
|
[12] |
Wang Q, Yin YF, Sun QY, et al.Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment[J].J Mater Res, 2014, 29(4):569-577
|
[13] |
Huang C, Tu J, Wen YR, et al.Microstructural characterization of pure titanium treated by laser surface treatment under different processing parameters[J].Acta Metall Sin (Engl Lett), 2018, 31(3):321-328
|
[14] |
Komasa S, Su YM, Taguchi Y, et al.Bioactivity of titanium surface nanostructures following chemical processing and heat treatment[J].J Hard Tissue Biol, 2015, 24(3):257-266
|
[15] |
Brunello G, Brun P, Gardin C, et al.Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study[J].PLoS One, 2018, 13(6):e0199591-
|
[16] |
Tsai BF, Chen YC, Ou SF, et al.Fabrication of superhydrophobic titanium surfaces by anodization and surface mechanical attrition treatment[J].Int J Appl Ceram Technol, 2019, 16(1):211-220
|
[17] |
Xie YN, Li JX, Yu ZM, et al.Nano modified SLA process for titanium implants[J]. Mater Lett, 2017, 186: 38-41.
|
[18] |
Sun J, Yao QT, Zhang YH, et al.Simultaneously improving surface mechanical properties and in vitro biocompatibility of pure titanium via surface mechanical attrition treatment combined with low-temperature plasma nitriding[J]. Surf Coat Technol, 2017, 309: 382-389.
|
[19] |
Lauer G, Wiedmann-Al-Ahmad M, Otten JE, et al.The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblast-like cells in vitro[J].Biomaterials, 2001, 22(20):2799-2809
|
[20] |
Eisenbarth E, Linez P, Biehl V, et al.Cell orientation and cytoskeleton organisation on ground titanium surfaces[J].Biomol Eng, 2002, 19(2-6):233-237
|
[21] |
Guida L, Oliva A, Basile MA, et al.Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces[J].J Dent, 2013, 41(10):900-907
|
[22] |
Shi XL, Xu LL, Munar ML, et al.Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response[J]. Mater Sci Eng C Mater Biol Appl, 2015, 49: 1-6.
|
[23] |
Lee SW, Kim SY, Lee MH, et al.Influence of etched microgrooves of uniform dimension on in vitro responses of human gingival fibroblasts[J].Clin Oral Implants Res, 2009, 20(5):458-466
|
[24] |
Ma QL, Wang W, Chu PK, et al.Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants[J]. Int J Nanomedicine, 2012, 7: 1965-1976.
|
[25] |
刘潇, 董福生, 王洁, 等.纯钛表面不同处理对人牙龈成纤维细胞增殖的影响[J].现代口腔医学杂志, 2014, 28(1):25-28
|
[26] |
陈静.纯钛表面粗糙度对人牙龈成纤维细胞影响的体外实验研究[D]. 成都: 四川大学, 2004.
|
[27] |
Ferrà-Ca?ellas MDM, Llopis-Grimalt MA, Monjo M, et al.Tuning nanopore diameter of titanium surfaces to improve human gingival fibroblast response[J].Int J Mol Sci, 2018, 19(10):E2881-
|
[28] |
Kearns VR, Williams RL, Mirvakily F, et al.Guided gingival fibroblast attachment to titanium surfaces: an in vitro study[J].J Clin Periodontol, 2013, 40(1):99-108
|
[29] |
Ramaglia L, Di Spigna G, Capece G, et al.Differentiation,apoptosis,and GM-CSF receptor expression of human gingival fibroblasts on a titanium surface treated by a dual acid-etched procedure[J].Clin Oral Investig, 2015, 19(9):2245-2253
|
[30] |
Baltriukien? D, Sabaliauskas V, Bal?iūnas E, et al.The effect of laser-treated titanium surface on human gingival fibroblast behavior[J].J Biomed Mater Res A, 2014, 102(3):713-720
|
[31] |
孟维艳, 赵爽, 王鹤龄, 等.不同钛表面形貌对人牙龈成纤维细胞附着及胶原沉积的影响[J].实用口腔医学杂志, 2017, 33(6):772-777
|
[32] |
Xing R, Salou L, Taxt-Lamolle S, et al.Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth[J].J Biomed Mater Res A, 2014, 102(5):1389-1398
|
[33] |
Wang YL, Zhang YF, Jing D, et al.Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces[J].Clin Oral Investig, 2016, 20(4):685-695
|
[34] |
Yang MG, Jiang PP, Ge Y, et al.Dopamine self-polymerized along with hydroxyapatite onto the preactivated titanium percutaneous implants surface to promote human gingival fibroblast behavior and antimicrobial activity for biological sealing[J].J Biomater Appl, 2018, 32(8):1071-1082
|
[35] |
de Avila ED, de Molon RS, Lima BP, et al.Impact of physical chemical characteristics of abutment implant surfaces on Bacteria adhesion[J].J Oral Implantol, 2016, 42(2):153-158
|
[36] |
Kaliaraj GS, Kirubaharan K, Pradhaban G, et al.Isolation and characterization of biogenic calcium carbonatephosphate from oral Bacteria and their adhesion studies on YSZ-coated titanium substrate for dental implant application[J].Bull Mater Sci, 2016, 39(2):385-389
|
[37] |
Zaborowska M, Welch K, Br?nemark R, et al.Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects[J].J Biomed Mater Res B Appl Biomater, 2015, 103(1):179-187
|