›› 2021, Vol. 41 ›› Issue (2): 170-176.
俞舟,黄廷贲,王慧明,杨国利
收稿日期:
2020-03-30
修回日期:
2020-06-14
出版日期:
2021-02-28
发布日期:
2021-03-03
通讯作者:
杨国利
E-mail:7308037@zju.edu.cn
基金资助:
Received:
2020-03-30
Revised:
2020-06-14
Online:
2021-02-28
Published:
2021-03-03
Contact:
Guo LiYang
E-mail:7308037@zju.edu.cn
Supported by:
摘要: 种植牙因其在解决牙列缺损方面巨大的优势,已成为许多缺牙患者首选的治疗方式。在临床应用中,如何促进种植体与骨组织界面的骨结合是种植治疗成功的关键,因此种植体表面改性一直是研究的热点。骨组织中含有钙、磷、锌、镁、锶等大量微量元素,这些微量元素对于骨组织的生长发育必不可少。因此可以通过将微量元素掺入种植体表面来促进种植体骨结合。本文着重介绍了种植体表面改性的相关技术以及微量元素促进骨结合的具体机制。
中图分类号:
俞舟 黄廷贲 王慧明 杨国利. 种植体掺离子表面改性技术及其促进骨结合的研究进展[J]. 口腔医学, 2021, 41(2): 170-176.
[1] | Le Guehennec L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J].Dent Mater, 2007, 23(7):844-54 |
[2] | Ruger M, Gensior T J, Herren C, et al.The removal of Al2O3 particles from grit-blasted titanium implant surfaces: effects on biocompatibility,osseointegration and interface strength in vivo[J].Acta Biomater, 2010, 6(7):2852-61 |
[3] | Yoo D, Marin C, Freitas G, et al.Surface characterization and in vivo evaluation of dual Acid-etched and grit-blastedacid-etched implants in sheep[J].Implant Dent, 2015, 24(3):256-62 |
[4] | Sima F, Davidson P M, Dentzer J, et al.Inorganic-organic thin implant coatings deposited by lasers[J].ACS Appl Mater Interfaces, 2015, 7(1):911-20 |
[5] | Qu Z, Rausch-Fan X, Wieland M, et al.The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification[J].J Biomed Mater Res A, 2007, 82(3):658-68 |
[6] | Ito Y, Hasuda H, Sakuragi M, et al.Surface modification of plastic,glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling[J].Acta Biomater, 2007, 3(6):1024-32 |
[7] | Zhou R, Wei D, Cheng S, et al.Structure,MC3T3-E1 cell response,and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure[J].ACS Appl Mater Interfaces, 2014, 6(7):4797-811 |
[8] | Shifang Z, Jue S, Fuming H, et al.Design and in vitro evaluation of simvastatin-hydroxyapatite coatings by an electrochemical process on titanium surfaces[J].J Biomed Nanotechnol, 2014, 10(7):1313-9 |
[9] | Iijima M, Tsukada M, Kamiya H.Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone[J].J Colloid Interface Sci, 2007, 307(2):418-24 |
[10] | Dumbleton J, Manley M T.Hydroxyapatite-coated prostheses in total hip and knee arthroplasty[J].J Bone Joint Surg Am, 2004, 86-A(11):2526-40 |
[11] | Sun L, Berndt C C, Gross K A, et al.Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review[J].J Biomed Mater Res, 2001, 58(5):570-92 |
[12] | Warren C J, Rose D J, Haushalter R C, et al.A New Transition Metal-Main Group Oxide Cluster in the Oxovanadium-Borate System: Hydrothermal Synthesis and Structure of (H(3)O)(12)[(VO)(12){B(16)O(32)(OH)(4)}(2)]28H(2)O[J].Inorg Chem, 1998, 37(6):1140-1141 |
[13] | Lai W, Chen C, Ren X, et al.Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62: 166-72. |
[14] | Chen Y, Chen X Y, Shen J W, et al.The Characterization and Osteogenic Activity of Nanostructured Strontium-Containing Oxide Layers on Titanium Surfaces[J].Int J Oral Maxillofac Implants, 2016, 31(4):e102-15 |
[15] | Zhou J, Zhao L.Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities[J]. Acta Biomater, 2016, 43: 358-368. |
[16] | Park J Y, Davies J E.Red blood cell and platelet interactions with titanium implant surfaces[J].Clin Oral Implants Res, 2000, 11(6):530-9 |
[17] | Yao Z Q, Ivanisenko Y, Diemant T, et al.Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation[J].Acta Biomater, 2010, 6(7):2816-25 |
[18] | Huang L Y, Xu K W, Lu J.A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings[J].J Mater Sci Mater Med, 2000, 11(11):667-73 |
[19] | Deplaine H, Lebourg M, Ripalda P, et al.Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds[J].J Biomed Mater Res B Appl Biomater, 2013, 101(1):173-86 |
[20] | Nordenstrom J, Elvius M, Bagedahl-Strindlund M, et al.Biochemical hyperparathyroidism and bone mineral status in patients treated long-term with lithium[J].Metabolism, 1994, 43(12):1563-7 |
[21] | Hedgepeth C M, Conrad L J, Zhang J, et al.Activation of the Wnt signaling pathway: a molecular mechanism for lithium action[J].Dev Biol, 1997, 185(1):82-91 |
[22] | Chalecka-Franaszek E, Chuang D M.Lithium activates the serinethreonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons[J].Proc Natl Acad Sci U S A, 1999, 96(15):8745-50 |
[23] | Baron R, Kneissel M.WNT signaling in bone homeostasis and disease: from human mutations to treatments[J].Nat Med, 2013, 19(2):179-92 |
[24] | Chen Y, Whetstone H C, Lin A C, et al.Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing[J].PLoS Med, 2007, 4(7):e249- |
[25] | Asagiri M, Takayanagi H.The molecular understanding of osteoclast differentiation[J].Bone, 2007, 40(2):251-64 |
[26] | Xu S, Zhang Y, Liu B, et al.Activation of mTORC1 in B Lymphocytes Promotes Osteoclast Formation via Regulation of beta-Catenin and RANKLOPG[J].J Bone Miner Res, 2016, 31(7):1320-33 |
[27] | Kramer I, Halleux C, Keller H, et al.Osteocyte Wntbeta-catenin signaling is required for normal bone homeostasis[J].Mol Cell Biol, 2010, 30(12):3071-85 |
[28] | Lacey D L, Timms E, Tan H L, et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J].Cell, 1998, 93(2):165-76 |
[29] | Fielding G A, Roy M, Bandyopadhyay A, et al.Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings[J].Acta Biomater, 2012, 8(8):3144-52 |
[30] | Hadley K B, Newman S M, Hunt J R.Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation,matrix maturation,and mineralization in the long bones of growing rats[J].J Nutr Biochem, 2010, 21(4):297-303 |
[31] | Khadeer M A, Sahu S N, Bai G, et al.Expression of the zinc transporter ZIP1 in osteoclasts[J].Bone, 2005, 37(3):296-304 |
[32] | Yamada Y, Ito A, Kojima H, et al.Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts[J].J Biomed Mater Res A, 2008, 84(2):344-52 |
[33] | Hie M, Tsukamoto I.Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone[J].Eur J Pharmacol, 2011, 668(1-2):140-6 |
[34] | Varanasi V G, Saiz E, Loomer P M, et al.Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions[J].Acta Biomater, 2009, 5(9):3536-47 |
[35] | Quinlan E, Partap S, Azevedo M M, et al.Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair[J]. Biomaterials, 2015, 52: 358-66. |
[36] | Wu C, Zhou Y, Fan W, et al.Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering[J].Biomaterials, 2012, 33(7):2076-85 |
[37] | Pacary E, Legros H, Valable S, et al.Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells[J].J Cell Sci, 2006, 119(Pt 13):2667-78 |
[38] | Ignjatovic N, Ajdukovic Z, Savic V, et al.Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones[J].J Mater Sci Mater Med, 2013, 24(2):343-54 |
[39] | Patntirapong S, Habibovic P, Hauschka P V.Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation[J].Biomaterials, 2009, 30(4):548-55 |
[40] | Cowan J A.Structural and catalytic chemistry of magnesium-dependent enzymes[J].Biometals, 2002, 15(3):225-35 |
[41] | Mayer I, Schlam R, Featherstone J D.Magnesium-containing carbonate apatites[J].J Inorg Biochem, 1997, 66(1):1-6 |
[42] | Rude R K, Gruber H E, Norton H J, et al.Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat[J].Bone, 2005, 37(2):211-9 |
[43] | Lu J, Wei J, Yan Y, et al.Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration[J].J Mater Sci Mater Med, 2011, 22(3):607-15 |
[44] | Landi E, Logroscino G, Proietti L, et al.Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour[J].J Mater Sci Mater Med, 2008, 19(1):239-47 |
[45] | Ziche M, Morbidelli L.Nitric oxide and angiogenesis[J].J Neurooncol, 2000, 50(1-2):139-48 |
[46] | Maier J A, Bernardini D, Rayssiguier Y, et al.High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro[J].Biochim Biophys Acta, 2004, 1689(1):6-12 |
[47] | Zou L, Lai H, Zhou Q, et al.Lasting controversy on ranibizumab and bevacizumab[J]. Theranostics, 2011, 1: 395-402. |
[48] | Dahl S G, Allain P, Marie P J, et al.Incorporation and distribution of strontium in bone[J].Bone, 2001, 28(4):446-53 |
[49] | Qiu K, Zhao X J, Wan C X, et al.Effect of strontium ions on the growth of ROS1728 cells on porous calcium polyphosphate scaffolds[J].Biomaterials, 2006, 27(8):1277-86 |
[50] | Coulombe J, Faure H, Robin B, et al.In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor[J].Biochem Biophys Res Commun, 2004, 323(4):1184-90 |
[51] | Tat S K, Pelletier J P, Mineau F, et al.Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts[J].Bone, 2011, 49(3):559-67 |
[52] | Saidak Z, Marie P J.Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis[J].Pharmacol Ther, 2012, 136(2):216-26 |
[53] | Hashizume M, Yamaguchi M.Stimulatory effect of beta-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells[J].Mol Cell Biochem, 1993, 122(1):59-64 |
[54] | Nielsen F H.Micronutrients in parenteral nutrition: boron,silicon,and fluoride[J].Gastroenterology, 2009, 137(5 Suppl):S55-60 |
[55] | Jugdaohsingh R, Calomme M R, Robinson K, et al.Increased longitudinal growth in rats on a silicon-depleted diet[J].Bone, 2008, 43(3):596-606 |
[56] | Hing K A, Revell P A, Smith N, et al.Effect of silicon level on rate,quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds[J].Biomaterials, 2006, 27(29):5014-26 |
[57] | Reffitt D M, Ogston N, Jugdaohsingh R, et al.Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J].Bone, 2003, 32(2):127-35 |
[58] | Jones J R, Tsigkou O, Coates E E, et al.Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells[J].Biomaterials, 2007, 28(9):1653-63 |
[59] | Pietak A M, Reid J W, Stott M J, et al.Silicon substitution in the calcium phosphate bioceramics[J].Biomaterials, 2007, 28(28):4023-32 |
[60] | Li H, Chang J.Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J].Acta Biomater, 2013, 9(6):6981-91 |
[61] | Zhaojun W, Lin W, Zhenyong W, et al.Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks[J].J Bone Miner Metab, 2013, 31(3):285-92 |
[62] | Lewiecki E M, Miller P D.Skeletal effects of primary hyperparathyroidism: bone mineral density and fracture risk[J].J Clin Densitom, 2013, 16(1):28-32 |
[63] | Filaire E, Toumi H.Reactive oxygen species and exercise on bone metabolism: friend or enemy?[J].Joint Bone Spine, 2012, 79(4):341-6 |
[1] | 赵萌 江莉婷 高益鸣. 微小RNA对骨衰老调控的相关研究进展[J]. , 2020, 40(6): 554-559. |
[2] | 李芳 关爽. 没食子酸对人舌鳞癌SCC15细胞自噬的影响[J]. , 2020, 40(11): 987-991. |
[3] | 傅瑜 杨蓉 单杰 张杰 林晓虎 江裕程 卞成玥 罗颐辰. 成釉细胞瘤患者lncRNA-mRNA共表达网络分析及作用研究[J]. , 2020, 40(10): 904-909. |
[4] | 徐丽娜 邱憬. 高脂血症对钛种植体骨结合影响的研究进展[J]. , 2019, 39(6): 557-560. |
[5] | 钱海馨 张富强. 微弧氧化钛表面对2型糖尿病大鼠骨髓基质干细胞成骨分化与种植体骨结合的影响[J]. , 2019, 39(12): 1062-1067. |
[6] | 孙芬 刘铭 刘名燕. 牵引力介导MC3T3-E1细胞microRNA的差异表达[J]. , 2018, 38(3): 222-226. |
[7] | 李鸿飞. 上颌窦底内提升同期植入人工骨粉对种植体骨结合的影响探析[J]. , 2018, 38(11): 1003-1006. |
[8] | 叶淑华 何福明. 口腔种植早期失败原因分析[J]. , 2017, 37(7): 642-646. |
[9] | 杨银辉 王耀钟 袁荣涛 贾暮云 林锡江. EGCG阻断FZD3和MAPK10基因表达调控颌骨牙源性角化囊性瘤转归[J]. , 2017, 37(5): 403-407. |
[10] | 尤柱 杜菁 刘少鹏 赵华强. 颞下颌关节紊乱病相关信号通路的研究新进展[J]. , 2017, 37(12): 1139-1143. |
[11] | 李智 葛少华. 纳米二氧化钛在生物医学中的应用进展[J]. , 2017, 37(1): 85-88. |
[12] | 牛玉梅 张巍巍 曹涛 李艳萍 刘会梅 贾丛辉. 模拟微重力影响人牙髓干细胞的矿化能力与RhoA-Rho激酶信号通路相关性研究[J]. , 2016, 36(5): 399-402. |
[13] | 戈旌 郑家伟 杨驰 王绍义 王绍义. GDF15对成血管和成骨/破骨作用的影响及机制的研究进展[J]. , 2016, 36(5): 453-457. |
[14] | 罗善峰 方文 杨国利 赵士芳. SLA种植体表面干扰LRP5信号影响骨结合的实验研究[J]. , 2016, 36(4): 309-313. |
[15] | 王会 王志峰 李传花 郝丹 徐巾诏 蓝菁. 高脂血症大鼠种植体早期骨结合界面的微观动态分析[J]. , 2016, 36(4): 327-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||