| [1] |
Stich T, Alagboso F, Křenek T,et al. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes and in vivo[J]. Bioeng Transl Med, 2021, 7(1): e10239.
doi: 10.1002/btm2.v7.1
|
| [2] |
Pozzi A, Polizzi G, Moy PK. Guided surgery with tooth-supported templates for single missing teeth: A critical review[J]. Eur J Oral Implantol, 2016, 9(Suppl 1): S135-S153.
|
| [3] |
Menini M, Bagnasco F, Calimodio I, et al. Influence of implant thread morphology on primary stability: A prospective clinical study[J]. Biomed Res Int, 2020, 2020: 6974050.
doi: 10.1155/bmri.v2020.1
|
| [4] |
Fugazzotto PA. Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months[J]. Int J Oral Maxillofac Implants, 2005, 20(1): 77-83.
|
| [5] |
Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration[J]. Acta Biomater, 2019, 94: 112-131.
doi: S1742-7061(19)30372-1
pmid: 31128320
|
| [6] |
Liu XM, Li M, Zhu YZ, et al. The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants[J]. Bioact Mater, 2016, 1(1): 65-76.
doi: 10.1016/j.bioactmat.2016.09.001
pmid: 29744396
|
| [7] |
Fu JH, Wang HL. Breaking the wave of peri-implantitis[J]. Periodontol 2000, 2020, 84(1): 145-160.
doi: 10.1111/prd.v84.1
|
| [8] |
Jepsen S, Berglundh T, Genco R, et al. Primary prevention of peri-implantitis: Managing peri-implant mucositis[J]. J Clin Periodontol, 2015, 42(Suppl 16): S152-S157.
|
| [9] |
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review[J]. Clin Oral Implants Res, 2018, 29(Suppl 18): 37-53.
|
| [10] |
Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering[J]. Int J Nanomedicine, 2019, 14: 4333-4351.
doi: 10.2147/IJN
|
| [11] |
Cui JJ, Xia LG, Lin KL, et al. construction of a nano-structured akermanite coating for promoting bone formation and osseointegra-tion of Ti-6Al-4V implants in a rabbit osteoporosis model[J]. J Mater Chem B, 2021, 9(46): 9505-9513.
doi: 10.1039/D1TB01917A
|
| [12] |
Zeng WW, Cheng NM, Liang X, et al. Electrospun polycaprolact-one nanofibrous membranes loaded with baicalin for antibacterial wound dressing[J]. Sci Rep, 2022, 12(1): 10900.
doi: 10.1038/s41598-022-13141-0
|
| [13] |
Guo AJY, Choi RCY, Cheung AWH, et al. Baicalin, a flavone, induces the differentiation of cultured osteoblasts: An action the Wnt/beta-catenin signaling pathway[J]. J Biol Chem, 2011, 286(32): 27882-27893.
doi: 10.1074/jbc.M111.236281
|
| [14] |
Ding FY, Nie Z, Deng HB, et al. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan[J]. Carbohydr Polym, 2013, 98(2): 1547-1552.
doi: 10.1016/j.carbpol.2013.07.042
|
| [15] |
Husain S, Al-Samadani KH, Najeeb S, et al. Chitosan biomateri-als for current and potential dental applications[J]. Materials(Basel), 2017, 10(6): 602.
|
| [16] |
Yang CC, Lin CC, Liao JW, et al. Vancomycin-chitosan compo-site deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(4): 2203-2212.
doi: 10.1016/j.msec.2013.01.038
|
| [17] |
Liu Y, Rath B, Tingart M, et al. Role of implants surface modification in osseointegration: A systematic review[J]. J Biomed Mater Res A, 2020, 108(3): 470-484.
doi: 10.1002/jbm.a.36829
pmid: 31664764
|
| [18] |
Hanawa T. Titanium-tissue interface reaction and its control with surface treatment[J]. Front Bioeng Biotechnol, 2019, 7: 170.
doi: 10.3389/fbioe.2019.00170
pmid: 31380361
|
| [19] |
Jafari S, Mahyad B, Hashemzadeh H, et al. Biomedical applications of TiO2 nanostructures: Recent advances[J]. Int J Nanomedicine, 2020, 15: 3447-3470.
doi: 10.2147/IJN.S249441
|
| [20] |
Li X, Chen T, Hu J, et al. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy anodic oxidation for enhanced interfacial biocompatibility and osseointegration[J]. Colloids Surf B Biointerfaces, 2016, 144: 265-275.
doi: 10.1016/j.colsurfb.2016.04.020
|
| [21] |
Maher S, Mazinani A, Barati MR, et al. Engineered titanium implants for localized drug delivery: Recent advances and perspectives of Titania nanotubes arrays[J]. Expert Opin Drug Deliv, 2018, 15(10): 1021-1037.
doi: 10.1080/17425247.2018.1517743
pmid: 30259776
|
| [22] |
Cai JC, Yang K, Xu H, et al. Improved drug incorporation and osteogenic effect of baicalin coating on different modified titanium surfaces[J]. J Mater Res, 2023, 38(5): 1364-1376.
doi: 10.1557/s43578-023-00895-0
|
| [23] |
Chen YR, Zhou YL, Yang SY, et al. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility[J]. Mater Sci Eng C Mater Biol Appl, 2016, 66: 84-91.
doi: 10.1016/j.msec.2016.04.070
|
| [24] |
Singh RK, Awasthi S, Dhayalan A, et al. Deposition, structure, physical and in vitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62: 692-701.
doi: 10.1016/j.msec.2016.02.013
|
| [25] |
Chen LR, Bai MX, Du RY, et al. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application[J]. J Biomater Sci Polym Ed, 2020, 31(16): 2152-2168.
doi: 10.1080/09205063.2020.1793706
|
| [26] |
Olivares-Navarrete R, Hyzy SL, Haithcock DA, et al. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins[J]. Bone, 2015, 73: 208-216.
doi: 10.1016/j.bone.2014.12.057
pmid: 25554602
|
| [27] |
Kumar Roy M, Nakahara K, Na TV, et al. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line induction of apoptosis[J]. Pharmazie, 2007, 62(2): 149-153.
pmid: 17341037
|
| [28] |
Lu L, Rao L, Jia HH, et al. Baicalin positively regulates osteoclast function by activating MAPK/Mitf signalling[J]. J Cell Mol Med, 2017, 21(7): 1361-1372.
doi: 10.1111/jcmm.13066
pmid: 28158928
|
| [29] |
Karimi S, Salahinejad E, Sharifi E, et al. Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel[J]. Carbohydr Polym, 2018, 202: 600-610.
doi: 10.1016/j.carbpol.2018.09.022
|
| [30] |
Chen WZ, Xu K, Tao BL, et al. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis and in vivo[J]. Acta Biomater, 2018, 74: 489-504.
doi: 10.1016/j.actbio.2018.04.043
|
| [31] |
Hjalmarsson L, Gheisarifar M, Jemt T. A systematic review of survival of single implants as presented in longitudinal studies with a follow-up of at least 10 years[J]. Eur J Oral Implantol, 2016, 9(Suppl 1): S155-S162.
|
| [32] |
Smeets R, Henningsen A, Jung O, et al. Definition, etiology, prevention and treatment of peri-implantitis: A review[J]. Head Face Med, 2014, 10: 34.
doi: 10.1186/1746-160X-10-34
pmid: 25185675
|
| [33] |
Alshammari H, Neilands J, Svensäter G, et al. Antimicrobial potential of strontium hydroxide on bacteria associated with peri-implantitis[J]. Antibiotics(Basel), 2021, 10(2): 150.
|
| [34] |
Leonhardt A, Dahlén G, Renvert S. Five-year clinical, microbiological, and radiological outcome following treatment of peri-implantitis in man[J]. J Periodontol, 2003, 74(10): 1415-1422.
pmid: 14653386
|
| [35] |
Zhang PS, Guo Q, Wei ZH, et al. Baicalin represses type three secretion system of Pseudomonas aeruginosa through PQS system[J]. Molecules, 2021, 26(6): 1497.
doi: 10.3390/molecules26061497
|
| [36] |
Friedman AJ, Phan J, Schairer DO, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens[J]. J Invest Dermatol, 2013, 133(5): 1231-1239.
doi: 10.1038/jid.2012.399
pmid: 23190896
|
| [37] |
Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease[J]. Virulence, 2011, 2(5): 395-401.
doi: 10.4161/viru.2.5.17035
pmid: 21921677
|
| [38] |
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance[J]. Adv Drug Deliv Rev, 2013, 65(13/14): 1803-1815.
doi: 10.1016/j.addr.2013.07.011
|
| [39] |
Ghimire N, Foss BL, Sun YY, et al. Interactions among osteoblas-tic cells, Staphylococcus aureus, and chitosan-immobilized titanium implants in a postoperative coculture system: A study[J]. J Biomed Mater Res A, 2016, 104(3): 586-594.
doi: 10.1002/jbm.a.v104.3
|