›› 2020, Vol. 40 ›› Issue (1): 63-66.
张艳珉1,杨国利2,姜治伟3,王慧明3
收稿日期:
2019-05-27
修回日期:
2019-08-05
出版日期:
2020-01-28
发布日期:
2020-01-16
通讯作者:
王慧明
E-mail:Whmwhm@zju.edu.cn
基金资助:
Received:
2019-05-27
Revised:
2019-08-05
Online:
2020-01-28
Published:
2020-01-16
摘要: [摘要] 近年来,因肿瘤、创伤、发育畸形、感染等原因造成骨缺损的修复材料包括自体骨或异体骨、人工合成材料、生物活性材料。然而,这些材料因取骨量限制、免疫排斥、成骨活性低、支架降解等问题一直困扰着临床医生。理想的骨缺损材料应具备三个要素,募集种子细胞、缓释生长因子、提供模拟微环境的支架。随着骨组织工程不断发展,脱细胞外基质材料(decellularuzed Extracellular Matrix,dECM)作为生物活性支架材料因其无免疫源性、良好的成骨性能、缓释生长因子、促进种子细胞的粘附、干性的维持等优点而倍受关注。本文围绕脱细胞外基质材料(dECM)在骨再生中的应用及研究进展作一综述。
中图分类号:
张艳珉 杨国利 姜治伟 王慧明. 脱细胞外基质支架材料在骨再生中的应用及研究进展[J]. 口腔医学, 2020, 40(1): 63-66.
[1] | BOSE S, ROY M, BANDYOPADHYAY A J T I B.Recent advances in bone tissue engineering scaffolds[J].Trends in Biotechnology, 2012, 30(10):546-554 |
[2] | CAI R, NAKAMOTO T, HOSHIBA T, et al.Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation[J].Acta Biomaterialia, 2016, 35(15):185-193 |
[3] | PREWITZ M C, STISSEL A, FRIEDRICHS J, et al.Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding [J]. Biomaterials, 2015, 73:60-69.[J].Biomaterials, 2015, 73:60-69 |
[4] | FARAG A, VAQUETTE C, THEODOROPOULOS C, et al.Decellularized periodontal ligament cell sheets with recellularization potential[J].Journal of Dental Research, 2014, 93(12):1313-1319 |
[5] | BAE S E, BHANG S H, KIM B S, et al.Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells[J].Biomacromolecules, 2012, 13(9):2811-2820 |
[6] | ZHANG W, ZHU Y, LI J, et al.Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering[J].Tissue Engineering Part B, Reviews, 2016, 22(3):193-207 |
[7] | LIN X, ZHAO C, ZHU P, et al.Periosteum extracellular-matrix-mediated acellular mineralization during bone formation[J].Advanced Healthcare Materials, 2018, 7(4):1700660- |
[8] | ZHANG X, LI H, SUN J, et al.Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration[J].Cell Proliferation, 2017, 50(5):e12361- |
[9] | CRAPO P M, GILBERT T W, BADYLAK S F.An overview of tissue and whole organ decellularization processes[J].Biomaterials, 2011, 32(12):3233-3243 |
[10] | GILBERT T W.Strategies for tissue and organ decellularization[J].Journal of Cellular Biochemistry, 2012, 113(7):2217-2222 |
[11] | ANTEBI B, ZHANG Z, WANG Y, et al.Stromal-cell-derived extracellular matrix promotes the proliferation and retains the osteogenic differentiation capacity of mesenchymal stem cells on three-dimensional scaffolds[J].Tissue Engineering Part C, Methods, 2015, 21(2):171-181 |
[12] | SONG J S, TAKIMOTO K, JEON M, et al.Decellularized human dental pulp as a scaffold for regenerative endodontics[J].Journal of Dental Research, 2017, 96(6):640-646 |
[13] | XIONG Y, HE J, ZHANG W, et al.Retention of the stemness of mouse adipose-derived stem cells by their expansion on human bone marrow stromal cell-derived extracellular matrix[J].Tissue Engineering Part A, 2015, 21(11-12):1886-1894 |
[14] | ZHANG Z, LUO X, XU H, et al.Bone marrow stromal cell-derived extracellular matrix promotes osteogenesis of adipose-derived stem cells[J].Cell Biology International, 2015, 39(3):291-299 |
[15] | WANG X, CHEN Z, ZHOU B, et al.Cell-Sheet-Derived ECM coatings and their effects on BMSCs responses[J].ACS Applied Materials & Interfaces, 2018, 10(14):11508-11518 |
[16] | SUN Y, LI W, LU Z, et al.Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix[J].FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2011, 25(5):1474-1485 |
[17] | LIN H, YANG G, TAN J, et al.Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation,migration and multi-lineage differentiation potential[J].Biomaterials, 2012, 33(18):4480-4489 |
[18] | MOTOIKE S, KAJIYA M, KOMATSU N, et al.Cryopreserved clumps of mesenchymal stem cellextracellular matrix complexes retain osteogenic capacity and induce bone regeneration[J].Stem Cell Research, 2018, 9(1):73- |
[19] | DU P, SUBBIAH R, PARK J H, et al.Vascular morphogenesis of human umbilical vein endothelial cells on cell-derived macromolecular matrix microenvironment[J].Tissue Engineering Part A, 2014, 20(17-18):2365-2377 |
[20] | WEI W, LI J, CHEN S, et al.In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration[J].Journal of Materials Chemistry B, 2017, 5(13):2468-2482 |
[21] | KIM J, MA T J B P.Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival[J].Biotechnology Progress, 2013, 29(2):441-451 |
[22] | KIM I G, HWANG M P, DU P, et al.Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing [J]. Biomaterials, 2015, 50:75-86.[J].Biomaterials, 2015, 50:75-86 |
[23] | HARVESTINE J N, VOLLMER N L, HO S S, et al.Extracellular matrix-coated composite scaffolds promote mesenchymal stem cell persistence and osteogenesis[J].Biomacromolecules, 2016, 17(11):3524-3531 |
[24] | PATI F, SONG T H, RIJAL G, et al.Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration [J]. Biomaterials, 2015, 37:230-241.[J].Biomaterials, 2015, 37:230-241 |
[25] | ONISHI T, SHIMIZU T, AKAHANE M, et al.Osteogenic extracellular matrix sheet for bone tissue regeneration [J]. European Cells & Materials, 2018, 36:68-80.[J].European Cells & Materials, 2018, 36:68-80 |
[26] | YANG Y, LIN H, SHEN H, et al.Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo[J].Acta Biomaterialia, 2018, 69(15):71-82 |
[27] | LI M, CHEN X, YAN J, et al.Inhibition of osteoclastogenesis by stem cell-derived extracellular matrix through modulation of intracellular reactive oxygen species[J].Acta Biomaterialia, 2018, 71(15):118-131 |
[28] | ZHOU L, CHEN X, LIU T, et al.SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells[J].Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(2):e1008-e1021 |
[29] | SCHULTZ H S, NITZE L M, ZEUTHEN L H, et al.Collagen induces maturation of human monocyte-derived dendritic cells by signaling through osteoclast-associated receptor[J].Journal of Immunology (Baltimore, Md), 2015, 194(7):3169-3179 |
[30] | SALBACH-HIRSCH J, ZIEGLER N, THIELE S, et al.Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts[J].Journal of Cellular Biochemistry, 2014, 115(6):1101-1111 |
[31] | HOCH A I, MITTAL V, MITRA D, et al.Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells [J]. Biomaterials, 2016, 74:178-187.[J].Biomaterials, 2016, 74:178-187 |
[32] | JANSON I A, PUTNAM A J.Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms[J].Journal of Biomedical Materials Research Part A, 2015, 103(3):1246-1258 |
[33] | MOSQUEIRA D, PAGLIARI S, UTO K, et al.Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure[J].ACS Nano, 2014, 8(3):2033-2047 |
[34] | KEGELMAN C D, MASON D E, DAWAHARE J H, et al.Skeletal cell YAP and TAZ combinatorially promote bone development[J].FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2018, 32(5):2706-2721 |
[35] | LARJAVA H, KOIVISTO L, HAKKINEN L, et al.Epithelial integrins with special reference to oral epithelia[J].Journal of Dental Research, 2011, 90(12):1367-1376 |
[36] | RAHMANY M B, VAN DYKE M.Biomimetic approaches to modulate cellular adhesion in biomaterials: A review[J].Acta Biomaterialia, 2013, 9(3):5431-5437 |
[37] | LECHT S, STABLER C T, RYLANDER A L, et al.Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells[J].Biomaterials, 2014, 35(10):3252-3262 |
[38] | OLIVARES-NAVARRETE R, HYZY S L, PARK J H, et al.Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop[J].Biomaterials, 2011, 32(27):6399-6411 |
[39] | SUN M, CHI G, XU J, et al.Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5[J].Stem Cell Research & Therapy, 2018, 9(1):52- |
[40] | KEANE T J, LONDONO R, TURNER N J, et al.Consequences of ineffective decellularization of biologic scaffolds on the host response[J].Biomaterials, 2012, 33(6):1771-1781 |
[1] | 冯煜婷 姜治伟 杨国利 谢志坚. 间充质干细胞来源的脱细胞基质及其研究进展[J]. , 2020, 40(3): 271-274. |
[2] | 梁德凤 周鑫才 李艳芬 赵晓华. 自体骨即刻移植对阻生第三磨牙拔除术后第二磨牙远中骨质缺损的疗效分析[J]. , 2019, 39(7): 624-627. |
[3] | 刘艳. 血小板浓缩物在口腔种植中的应用[J]. , 2019, 39(7): 636-641. |
[4] | 王莉莉 严佳 李东升 莫秀梅 胡小坤 章非敏 刘梅. 两种新型胶原膜引导骨组织再生的体内外性能研究[J]. , 2019, 39(6): 481-487. |
[5] | 施少杰 丁锋 宋应亮. GBR技术引导颌骨再生的研究进展[J]. , 2019, 39(3): 261-265. |
[6] | 刘璐 黄天意 史金先 王晓容. 聚乳酸-羟基乙酸在骨组织工程支架材料中的应用[J]. , 2019, 39(2): 167-170. |
[7] | 郝柯屹 田杰华 吕鸣樾 刘焱萍 魏冬豪 张宇. GBR植骨相较于自体骨移植远期稳定性的优势[J]. , 2019, 39(1): 60-62. |
[8] | 吴迪 史欣 刘明月 胡伟平. 富血小板纤维蛋白在口腔再生领域中的应用[J]. , 2018, 38(9): 852-855. |
[9] | 吉祖琴 吴祥冰 任伟. 登腾口腔修复膜引导骨再生应用于牙种植患者中的疗效及安全性探析[J]. , 2018, 38(9): 824-826. |
[10] | 王之发 孙硕辉 马军利 王桥 汪维健 段建民. 脂肪干细胞复合成骨性干细胞膜片用于修复兔颅骨缺损的实验研究[J]. , 2018, 38(7): 0-0. |
[11] | 程燚 章非敏. 复合水凝胶支架在骨组织工程中的应用[J]. , 2018, 38(6): 563-568. |
[12] | 王佳 翟婧捷 裴婷婷 邹净亭 刘珍珍 相星辰 周延民. 上前牙区即刻种植联合钛网及富血小板纤维蛋白1例[J]. , 2018, 38(3): 273-276. |
[13] | 冯靖 宋砚斌 蒋锋 张双越. PRF联合钛网在前牙美学区牙种植中应用的临床研究[J]. , 2018, 38(11): 999-1002. |
[14] | 李晓明 袁长永 刘宗响 王鹏来. 牙源性干细胞在牙槽骨再生领域的研究进展[J]. , 2017, 37(8): 755-759. |
[15] | 周凯 黄菲 张娟 王琛. 纳米羟基磷灰石在骨重建中的效应和机理[J]. , 2017, 37(5): 453-456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||