[1] |
Losic D, Aw MS, Santos A, et al. Titania nanotube arrays for local drug delivery: Recent advances and perspectives[J]. Expert Opin Drug Deliv, 2015, 12(1):103-127.
doi: 10.1517/17425247.2014.945418
pmid: 25376706
|
[2] |
Zhou JC, Frank MA, Yang YY, et al. A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Mater Sci Eng C Mater Biol Appl, 2018, 82: 277-283.
doi: 10.1016/j.msec.2017.08.066
|
[3] |
Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration[J]. Trends Biotechnol, 2012, 30(6):315-322.
doi: 10.1016/j.tibtech.2012.02.005
pmid: 22424819
|
[4] |
Yu WQ, Jiang XQ, Zhang FQ, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation[J]. J Biomed Mater Res A, 2010, 94(4):1012-1022.
|
[5] |
Yu WQ, Qiu J, Xu L, et al. Corrosion behaviors of TiO2 nanotube layers on titanium in Hank's solution[J]. Biomed Mater, 2009, 4(6):065012.
|
[6] |
Maher S, Mazinani A, Barati MR, et al. Engineered titanium implants for localized drug delivery: Recent advances and perspectives of Titania nanotubes arrays[J]. Expert Opin Drug Deliv, 2018, 15(10):1021-1037.
doi: 10.1080/17425247.2018.1517743
pmid: 30259776
|
[7] |
Losic D, Atkins GJ, Pivonka P, et al. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants[J]. Int J Nanomed, 2012: 4883.
|
[8] |
Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic[J]. Free Radic Biol Med, 1993, 14(3):313-323.
doi: 10.1016/0891-5849(93)90028-S
|
[9] |
Barchielli G, Capperucci A, Tanini D. The role of selenium in pathologies: An updated review[J]. Antioxidants(Basel), 2022, 11(2):251.
|
[10] |
Jia ZQ, Li SQ, Qiao WQ, et al. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury[J]. Neurosci Lett, 2018, 678: 110-117.
doi: 10.1016/j.neulet.2018.05.007
|
[11] |
Baddock HT, Brolih S, Yosaatmadja Y, et al. Characterization of the SARS-CoV-2 ExoN(nsp14ExoN-nsp10)complex: Implications for its role in viral genome stability and inhibitor identification[J]. Nucleic Acids Res, 2022, 50(3):1484-1500.
doi: 10.1093/nar/gkab1303
pmid: 35037045
|
[12] |
Tang Y, Zhang SQ, Chang YJ, et al. Aglycone ebselen and β-d-xyloside primed glycosaminoglycans co-contribute to ebselen β-d-xyloside-induced cytotoxicity[J]. J Med Chem, 2018, 61(7):2937-2948.
doi: 10.1021/acs.jmedchem.7b01835
pmid: 29584939
|
[13] |
Brassington K, Chan SMH, de Luca SN, et al. Ebselen abolishes vascular dysfunction in influenza A virus-induced exacerbations of cigarette smoke-induced lung inflammation in mice[J]. Clin Sci(Lond), 2022, 136(8):537-555.
doi: 10.1042/CS20211090
|
[14] |
Sudharsan M, Rajendra PN, Chakraborty A, et al. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment[J]. J Proteomics, 2022, 267: 104697.
|
[15] |
Tuo QZ, Masaldan S, Southon A, et al. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury[J]. Neurotherapeutics, 2021, 18(4):2682-2691.
doi: 10.1007/s13311-021-01111-9
|
[16] |
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, et al. Ebselen enhances insulin sensitivity and decreases oxidative stress by inhibiting SHIP2 and protects from inflammation in diabetic mice[J]. Int J Biol Sci, 2022, 18(5):1852-1864.
doi: 10.7150/ijbs.66314
pmid: 35342343
|
[17] |
Wahl CM, Schmidt C, Hecker M, et al. Distress-mediated remodeling of cardiac connexin-43 in a novel cell model for arrhythmogenic heart diseases[J]. Int J Mol Sci, 2022, 23(17):10174.
doi: 10.3390/ijms231710174
|
[18] |
Chen C, Yang KW. Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria[J]. Bioorg Chem, 2019, 93: 103286.
|
[19] |
Kaczor-Keller KB, Pawlik A, Scianowski J, et al. In vitro anti-prostate cancer activity of two ebselen analogues[J]. Pharmaceuticals(Basel), 2020, 13(3):47.
|
[20] |
Baek JM, Kim JY, Yoon KH, et al. Ebselen is a potential anti-osteoporosis agent by suppressing receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation in vitro and lipopolysaccharide-induced inflammatory bone destruction in vivo[J]. Int J Biol Sci, 2016, 12(5):478-488.
doi: 10.7150/ijbs.13815
|
[21] |
王星, 陈春桥, 康凌晨, 等. Ebselen卟啉的合成及其与牛血清白蛋白的相互作用[J]. 武汉大学学报(理学版), 2006, 52(4):410-414.
|
[22] |
Lee HC, Ismail T, Kim Y, et al. Xenopus gpx3 mediates posterior development by regulating cell death during embryogenesis[J]. Antioxidants(Basel), 2020, 9(12):1265.
|
[23] |
Haddad EB, McCluskie K, Birrell MA, et al. Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation[J]. J Immunol, 2002, 169(2):974-982.
doi: 10.4049/jimmunol.169.2.974
pmid: 12097404
|
[24] |
Marreddy RKR, Olaitan AO, May JN, et al. Ebselen not only inhibits Clostridioides difficile toxins but displays redox-associated cellular killing[J]. Microbiol Spectr, 2021, 9(2):e0044821.
|
[25] |
Zhang YF, Gulati K, Li Z, et al. Dental implant nano-engineering: Advances, limitations and future directions[J]. Nanomaterials(Basel), 2021, 11(10):2489.
|
[26] |
Chen W, Zhu WQ, Qiu J. Impact of exogenous metal ions on peri-implant bone metabolism: A review[J]. RSC Adv, 2021, 11(22):13152-13163.
doi: 10.1039/d0ra09395e
pmid: 35423842
|
[27] |
Noguchi N. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases[J]. Arch Biochem Biophys, 2016, 595: 109-112.
doi: 10.1016/j.abb.2015.10.024
pmid: 27095225
|
[28] |
Ma Z, Gao J, Wu X, et al. Preparation of well-aligned TiO2 nanotubes with high length-diameter aspect ratio by anodic oxidation method[J]. J Nanosci Nanotechnol, 2018, 18(8):5810-5816.
doi: 10.1166/jnn.2018.15397
|
[29] |
Gulati K, Ramakrishnan S, Aw MS, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion[J]. Acta Biomater, 2012, 8(1):449-456.
doi: 10.1016/j.actbio.2011.09.004
pmid: 21930254
|
[30] |
Singh VP, Poon JF, Yan JJ, et al. Nitro-, azo-, and amino derivatives of ebselen: Synthesis, structure, and cytoprotective effects[J]. J Org Chem, 2017, 82(1):313-321.
doi: 10.1021/acs.joc.6b02418
pmid: 27997177
|
[31] |
Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation[J]. Oral Dis, 2002, 8(3):147-159.
doi: 10.1034/j.1601-0825.2002.01829.x
pmid: 12108759
|
[32] |
Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24.
doi: S0009-9120(18)30383-7
pmid: 30003880
|
[33] |
Martins CM, de Azevedo Queiroz IO, Ervolino E, et al. RUNX-2, OPN and OCN expression induced by grey and white mineral trioxide aggregate in normal and hypertensive rats[J]. Int Endod J, 2018, 51(6):641-648.
doi: 10.1111/iej.12876
pmid: 29143348
|
[34] |
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization[J]. Gene, 2020, 754: 144855.
|
[35] |
刚芹果. 松质骨的固-液二相理论及其应用[D]. 太原: 太原理工大学, 2001.
|