口腔医学 ›› 2024, Vol. 44 ›› Issue (2): 156-160.doi: 10.13591/j.cnki.kqyx.2024.02.015
• 综述 • 上一篇
收稿日期:
2022-08-22
出版日期:
2024-02-28
发布日期:
2024-02-04
通讯作者:
李潇 Tel:(020)88686642 E-mail: 基金资助:
WANG Weina,LUO Jing,ZHAO Jinhua,LI Zebin,LI Xiao()
Received:
2022-08-22
Online:
2024-02-28
Published:
2024-02-04
摘要:
三维打印是计算机辅助制造的一种,通过三维打印设备,将数字化设计转化为实体。随着各种数字化手段的发展,三维打印已广泛应用于口腔修复体的制作。口腔种植义齿被称作人类第二副牙齿,以其美观、舒适等优点成为临床修复热点。目前,口腔种植体主要采用传统方法制造,三维打印可以提高种植体的个性化程度和制作效率。众多研究已证实,三维打印种植体是可行的,但在种植体设计、表面修饰等方面尚未有统一结论。本文通过阐述三维打印金属及全瓷种植体的最新研究进展,旨在带来种植体材料选择、制作工艺、表面设计及修饰等方面的思考,为三维打印种植体的进一步研究提供参考,以期更好地服务于临床。
中图分类号:
王伟娜, 雒静, 赵金花, 李泽彬, 李潇. 三维打印口腔修复种植体的研究进展[J]. 口腔医学, 2024, 44(2): 156-160.
WANG Weina, LUO Jing, ZHAO Jinhua, LI Zebin, LI Xiao. Research progress of dental implant fabricated with 3D printing[J]. Stomatology, 2024, 44(2): 156-160.
[1] |
Barazanchi A, Li KC, Al-Amleh B, et al. Additive technology:Update on current materials and applications in dentistry[J]. J Prosthodont, 2017, 26(2):156-163.
doi: 10.1111/jopr.12510 pmid: 27662423 |
[2] |
Wan Hassan WN, Yusoff Y, Mardi NA. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding[J]. Am J Orthod Dentofacial Orthop, 2017, 151(1):209-218.
doi: 10.1016/j.ajodo.2016.08.019 |
[3] |
Turbush SK, Turkyilmaz I. Accuracy of three different types of stereolithographic surgical guide in implant placement:An in vitro study[J]. J Prosthet Dent, 2012, 108(3):181-188.
doi: 10.1016/S0022-3913(12)60145-0 |
[4] |
Chen JY, Zhang ZG, Chen XS, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology[J]. J Prosthet Dent, 2014, 112(5):1088-1095.e1.
doi: 10.1016/j.prosdent.2014.04.026 pmid: 24939253 |
[5] |
Pirker W, Wiedemann D, Lidauer A, et al. Immediate, single stage, truly anatomic zirconia implant in lower molar replacement:A case report with 2.5 years follow-up[J]. Int J Oral Maxillofac Surg, 2011, 40(2):212-216.
doi: 10.1016/j.ijom.2010.08.003 |
[6] |
Ciocca L, Fantini M, de Crescenzio F, et al. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary Arches[J]. Med Biol Eng Comput, 2011, 49(11):1347-1352.
doi: 10.1007/s11517-011-0813-4 pmid: 21779902 |
[7] |
Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM:Selective laser melting technology[J]. Int J Oral Maxillofac Surg, 2012, 41(7):858-862.
doi: 10.1016/j.ijom.2012.01.014 |
[8] | Mangano FG, de Franco M, Caprioglio A, et al. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants:A 1-year prospective study on 15 patients[J]. Lasers Med Sci, 2014, 29(4):1321-1328. |
[9] | 周万琳, 李美华. 选择性激光烧结3D打印钛合金种植体的制备[J]. 哈尔滨医科大学学报, 2019, 53(6):593-597. |
[10] |
Mangano F, Pozzi-Taubert S, Zecca PA, et al. Immediate restoration of fixed partial prostheses supported by one-piece narrow-diameter selective laser sintering implants:A 2-year prospective study in the posterior jaws of 16 patients[J]. Implant Dent, 2013, 22(4):388-393.
doi: 10.1097/ID.0b013e31829afa9d |
[11] |
Ng SL, Das S, Ting YP, et al. Benefits and biosafety of use of 3D-printing technology for titanium biomedical implants:A pilot study in the rabbit model[J]. Int J Mol Sci, 2021, 22(16):8480.
doi: 10.3390/ijms22168480 |
[12] |
le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007, 23(7):844-854.
doi: 10.1016/j.dental.2006.06.025 pmid: 16904738 |
[13] | 王蕊, 李美华, 周万琳. 3D打印钛合金种植体的制备及其骨结合性能[J]. 吉林大学学报(医学版), 2021, 47(1):82-88. |
[14] |
Ren B, Wan Y, Liu C, et al. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118:111505.
doi: 10.1016/j.msec.2020.111505 |
[15] |
Tu CC, Tsai PI, Chen SY, et al. 3D laser-printed porous Ti6Al4V dental implants for compromised bone support[J]. J Formos Med Assoc, 2020, 119(1 Pt 3):420-429.
doi: 10.1016/j.jfma.2019.07.023 |
[16] |
Olivier V, Faucheux N, Hardouin P. Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery[J]. Drug Discov Today, 2004, 9(18):803-811.
doi: 10.1016/S1359-6446(04)03222-2 pmid: 15364068 |
[17] |
Ran QC, Yang WH, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J]. J Mech Behav Biomed Mater, 2018, 84:1-11.
doi: S1751-6161(18)30124-3 pmid: 29709846 |
[18] |
Yang F, Chen C, Zhou QR, et al. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants:Fabrication, biocompatibility analysis and photoelastic study[J]. Sci Rep, 2017, 7:45360.
doi: 10.1038/srep45360 pmid: 28350007 |
[19] |
Gao CH, Wang CY, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics[J]. RSC Adv, 2018, 8(44):25210-25227.
doi: 10.1039/C8RA04815K |
[20] | Yin S, Zhang WJ, Tang YM, et al. Preservation of alveolar ridge height through mechanical memory:A novel dental implant design[J]. Bioact Mater, 2020, 6(1):75-83. |
[21] |
Murr LE. Additive manufacturing of biomedical devices:An overview[J]. Mater Technol, 2018, 33(1):57-70.
doi: 10.1080/10667857.2017.1389052 |
[22] |
黄硕, 郭芳, 刘宁, 等. 3D打印个性化根形钛合金种植体在下颌磨牙区即刻种植的临床研究[J]. 口腔医学研究, 2021, 37(7):602-606.
doi: 10.13701/j.cnki.kqyxyj.2021.07.006 |
[23] |
Dantas TA, Carneiro Neto JP, Alves JL, et al. In silico evaluation of the stress fields on the cortical bone surrounding dental implants:Comparing root-analogue and screwed implants[J]. J Mech Behav Biomed Mater, 2020, 104:103667.
doi: 10.1016/j.jmbbm.2020.103667 |
[24] |
Xiong YY, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures[J]. Dent Mater J, 2012, 31(5):815-820.
pmid: 23037845 |
[25] | Mitra I, Bose S, Dernell WS, et al. 3D Printing in alloy design to improve biocompatibility in metallic implants[J]. Mater Today (Kidlington), 2021, 45:20-34. |
[26] |
Lee J, Lee JB, Yun J, et al. The impact of surface treatment in 3-dimensional printed implants for early osseointegration:A comparison study of three different surfaces[J]. Sci Rep, 2021, 11(1):10453.
doi: 10.1038/s41598-021-89961-3 |
[27] |
Li L, Lee J, Amara HB, et al. Comparison of 3D-printed dental implants with threaded implants for osseointegration:An experimental pilot study[J]. Materials (Basel), 2020, 13(21):4815.
doi: 10.3390/ma13214815 |
[28] |
Zhang XT, Mao J, Zhou YF, et al. Mechanical properties and osteoblast proliferation of complex porous dental implants filled with magnesium alloy based on 3D printing[J]. J Biomater Appl, 2021, 35(10):1275-1283.
doi: 10.1177/0885328220957902 |
[29] |
Bollman M, Malbrue R, Li CH, et al. Improvement of osseointegration by recruiting stem cells to titanium implants fabricated with 3D printing[J]. Ann N Y Acad Sci, 2020, 1463(1):37-44.
doi: 10.1111/nyas.v1463.1 |
[30] | 李伶俐, 王之发, 李潇. 3D打印Ti-6Al-4V多孔支架碱酸热处理并负载黄芩苷涂层的制备及生物学评价[J]. 实用口腔医学杂志, 2020, 36(6):850-854. |
[31] |
Maher S, Wijenayaka AR, Lima-Marques L, et al. Advancing of additive-manufactured titanium implants with bioinspired micro- to nanotopographies[J]. ACS Biomater Sci Eng, 2021, 7(2):441-450.
doi: 10.1021/acsbiomaterials.0c01210 pmid: 33492936 |
[32] |
Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing[J]. J Prosthet Dent, 2017, 118(2):208-215.
doi: 10.1016/j.prosdent.2016.10.030 |
[33] | 倪王成, 胡琳驰, 张维丹, 等. 3D打印和CAD/CAM氧化锆种植体骨结合性能的动物实验评价[J]. 口腔医学, 2021, 41(2):144-148. |
[34] | 贲玥, 张乐, 魏帅, 等. 3D打印陶瓷材料研究进展[J]. 材料导报, 2016, 30(21):109-118. |
[35] |
Ebert J, Ozkol E, Zeichner A, et al. Direct inkjet printing of dental prostheses made of zirconia[J]. J Dent Res, 2009, 88(7):673-676.
doi: 10.1177/0022034509339988 pmid: 19641157 |
[36] |
Rutz AL, Hyland KE, Jakus AE, et al. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels[J]. Adv Mater, 2015, 27(9):1607-1614.
doi: 10.1002/adma.v27.9 |
[37] |
Derby B. Additivemanufacture of ceramics components by inkjet printing[J]. Engineering, 2015, 1(1):113-123.
doi: 10.15302/J-ENG-2015014 |
[38] |
Bertrand P, Bayle F, Combe C, et al. Ceramic components manufacturing by selective laser sintering[J]. Appl Surf Sci, 2007, 254(4):989-992.
doi: 10.1016/j.apsusc.2007.08.085 |
[39] |
Yves-Christian H, Jan W, Wilhelm M, et al. Net shaped high performance oxide ceramic parts by selective laser melting[J]. Phys Procedia, 2010, 5:587-594.
doi: 10.1016/j.phpro.2010.08.086 |
[40] |
Ratsimba A, Zerrouki A, Tessier-Doyen N, et al. Densification behaviour and three-dimensional printing of Y2O3 ceramic powder by selective laser sintering[J]. Ceram Int, 2021, 47(6):7465-7474.
doi: 10.1016/j.ceramint.2020.11.087 |
[41] |
Osman RB, van der Veen AJ, Huiberts D, et al. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs[J]. J Mech Behav Biomed Mater, 2017, 75:521-528.
doi: 10.1016/j.jmbbm.2017.08.018 |
[42] |
Ioannidis A, Bomze D, Hämmerle CHF, et al. Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars[J]. Dent Mater, 2020, 36(4):e109-e116.
doi: 10.1016/j.dental.2020.01.016 pmid: 31992483 |
[43] | 郭亮, 金而立, 苏嘉敏, 等. 氧化锆陶瓷DLP 3D打印技术研究[J]. 应用激光, 2020, 40(6):1040-1044. |
[44] | 赵祯, 代康, 高勃. 3D打印陶瓷技术在口腔医学领域的研究进展[J]. 中国实用口腔科杂志, 2021, 14(6):739-744. |
[45] | Cheng YC, Lin DH, Jiang CP, et al. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic[J]. Int J Numer Method Biomed Eng, 2017, 33(5):e820. |
[46] |
Kim JC, Yeo ISL. Bone response to conventional titanium implants and new zirconia implants produced by additive manufacturing[J]. Materials (Basel), 2021, 14(16):4405.
doi: 10.3390/ma14164405 |
[47] |
Pirker W, Kocher A. Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets:2-year follow-up of a clinical study[J]. Int J Oral Maxillofac Surg, 2009, 38(11):1127-1132.
doi: 10.1016/j.ijom.2009.07.008 |
[48] |
Shen ZJ, Liu LF, Xu XQ, et al. Fractography of self-glazed zirconia with improved reliability[J]. J Eur Ceram Soc, 2017, 37(14):4339-4345.
doi: 10.1016/j.jeurceramsoc.2017.03.008 |
[49] |
Moin DA, Hassan B, Wismeijer D. A novel approach for custom three-dimensional printing of a zirconia root analogue implant by digital light processing[J]. Clin Oral Implants Res, 2017, 28(6):668-670.
doi: 10.1111/clr.2017.28.issue-6 |
[1] | 赵艳芳, 辛海涛, 李恺, 罗慧闻, 卢国徽, 吴玉禄. 结构设计对三维打印树脂牙列模型尺寸稳定性的影响[J]. 口腔医学, 2024, 44(2): 110-114. |
[2] | 叶宸汐, 吴楠, 徐旭. 三维打印种植体抗菌性能研究现状[J]. 口腔医学, 2023, 43(8): 763-768. |
[3] | 杜亚鑫. 新型树脂-陶瓷复合材料粘接性能的研究进展[J]. 口腔医学, 2022, 42(8): 764-768. |
[4] | 赵祯, 代康, 于海, 赵喆, 高勃. 立体光固化成型氧化锆陶瓷的生物安全性评价[J]. 口腔医学, 2022, 42(1): 47-52. |
[5] | 刘玉洁 李保胜 张震阳 欧燕珍 孟维艳. 钛表面纳米形貌及特性对成纤维细胞影响的研究进展[J]. , 2021, 41(8): 751-754. |
[6] | 廖梦圆 谢海峰 沈佳娣 戴诗琪 陈晨. 三种高透氧化锆陶瓷的半透明度及颜色评价[J]. , 2020, 40(7): 597-601. |
[7] | 屠美洁 宿凌恺 何福明 邓淑丽. 新型快速硬固型根尖倒充填材料的研究进展[J]. , 2020, 40(1): 87-91. |
[8] | 刘伟 文爱杰. 二硅酸锂铸瓷牙合贴面在牙列重度磨耗修复中的临床应用[J]. , 2019, 39(8): 719-723. |
[9] | 吴欣祎 谢海峰 陈冰卓 孟虹良 何峰 陈晨. 一种通用粘接剂对不同CAD/CAM可切削材料的短期粘接成绩[J]. , 2019, 39(3): 203-206. |
[10] | 吉玉 刘玉玲 张青红 李林 章非敏 刘梅. 溶胶凝胶自组装法硅涂层对氧化锆陶瓷与树脂短期粘结强度的影响[J]. , 2018, 38(7): 597-601. |
[11] | 周琳怡. 光动力疗法在口腔种植体周围炎中应用进展[J]. , 2018, 38(6): 569-572. |
[12] | 郑树灿 黄旭瑶 周勇 李朝晖. 二硅酸锂玻璃陶瓷在前牙过小牙修复的临床应用[J]. , 2018, 38(2): 154-157. |
[13] | 万竹青 沈国芳. 正颌手术上颌骨精确定位技术的进展[J]. , 2018, 38(10): 934-937. |
[14] | 曹桂珍. 改良铸瓷高嵌体用于后牙根管治疗后牙体修复的临床研究[J]. , 2017, 37(8): 715-719. |
[15] | 韩石磊 赵颖 李大鹏 王羽泽 杜青 谢伟丽. 碱热处理联合紫外光照后钛体外活性的研究[J]. , 2017, 37(5): 408-412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||