›› 2020, Vol. 40 ›› Issue (11): 971-975.

• 基础研究 • 上一篇    下一篇

全降解镁合金组织工程支架孔隙特征与性能关系研究

熊美萍1,贾高智2,袁广银2   

  1. 1. 复旦大学上海市第五人民医院
    2. 上海交通大学材料科学与工程学院
  • 收稿日期:2020-05-07 修回日期:2020-07-10 出版日期:2020-11-28 发布日期:2020-11-24
  • 通讯作者: 熊美萍 E-mail:xmpygy@163.com

Study on the correlation of micro-architectures and performance of biodegradable Mg-based tissue engineering scaffolds

  • Received:2020-05-07 Revised:2020-07-10 Online:2020-11-28 Published:2020-11-24
  • Contact: Mei-Ping XIONG E-mail:xmpygy@163.com

摘要: 目的 研究可供口腔颌面修复用的全降解多孔镁及镁合金组织工程支架的孔隙特征和生物学性能。方法 采用模板复制法,以不同形状的NaCl颗粒为造孔粒子,通过渗流铸造工艺分别获得球形孔结构和不规则多面体孔结构的多孔镁及镁合金组织工程支架,两组支架微结构的主孔尺寸一致,联通孔尺寸分别为200~350 μm、50~300 μm,孔隙率分别为75%和68%。利用扫描电子显微镜、X射线断层衍射、压缩力学测试、析氢测试、浸泡实验和细胞直接培养测试,比较分析微结构对孔隙特征、力学性能、降解行为和细胞粘附的影响。结果 扫描电子显微镜和X射线断层衍射结果显示,球形孔支架具有更好的联通性;微结构中的第二相金属间化合物能显著提高微结构的力学性能;比表面积大、孔隙率低的多孔镁支架析氢速率(降解速率)更快;支架与成骨细胞的共培养结果显示微结构降解过快不利于细胞粘附和存活。结论 调控微结构可以改变镁合金组织工程支架联通性、降解速率和力学性能,实行性能可控。

关键词: 全降解镁合金骨组织工程支架, 孔隙特征, 力学性能, 降解性能, 细胞行为

Abstract: Objective To study the pore characteristics and biological properties of porous magnesium and magnesium alloy scaffolds. Methods Porous magnesium and magnesium alloy with different architectures were obtained by the method of template replication, NaCl particles of different shapes were used as space-holder particles. The effects of micro-architectures on pore characteristics, mechanical properties, degradation behavior and cell adhesion were compared and analyzed by scanning electron microscopy (SEM), X-ray tomography (micro-CT), compressive tests, hydrogen evolution tests, immersion tests and direct cell culture tests. Results SEM and micro-CT results showed that the spherical pore structure had better interconnectivity. The intermetallic compound could significantly improve the mechanical properties of micro-architecture. The hydrogen evolution rate of porous magnesium scaffolds with larger specific surface area and lower porosity was faster. The results of scaffold-osteoblasts co-culture showed that the rapid degradation of micro-architectures was not conducive to cell adhesion and survival. Conclusion The interconnectivity, degradation rates and mechanical properties of Mg-based scaffolds can be modulated by adjusting the micro-architectures, whose implement performance is controllable.

Key words: biodegradable Mgbased bone tissue engineering scaffold, pore characteristics, mechanical properties, biodegradation, cell behavior

中图分类号: