口腔医学 ›› 2023, Vol. 43 ›› Issue (1): 82-87.doi: 10.13591/j.cnki.kqyx.2023.01.014
陈艺菲1,张辰玥1,张璟岚1,张滨婧1,戎鑫2,胡芝爱3()
修回日期:
2022-06-13
出版日期:
2023-01-28
发布日期:
2023-01-11
通讯作者:
胡芝爱
E-mail:380658360@qq.com
基金资助:
CHEN Yifei1,ZHANG Chenyue1,ZHANG Jinglan1,ZHANG Binjing1,RONG Xin2,HU Zhiai3()
Revised:
2022-06-13
Online:
2023-01-28
Published:
2023-01-11
Contact:
HU Zhiai
E-mail:380658360@qq.com
摘要:
血管化作为骨、牙髓、皮肤等口腔颌面组织再生的关键,一直是组织工程研究的重点。随着三维(three-dimensional, 3D)打印在组织工程领域的发展,构建血管结构的方式逐渐增加。但要达到在形态及功能上高度模拟血管结构的目的,构建精度较高且具备生物功能的高仿真血管结构以促进组织修复仍是3D生物打印需要克服的一大难点。该文总结了三维打印血管结构的新进展,阐述了几种前沿生物制造技术即悬浮打印、同轴打印、4D打印等在构建血管及血管化结构中的应用,并分析和探讨其优缺点与应用前景,为三维打印血管在口腔颌面组织再生修复方面的应用提供参考。
中图分类号:
陈艺菲,张辰玥,张璟岚,张滨婧,戎鑫,胡芝爱. 三维打印血管的研究进展[J]. 口腔医学, 2023, 43(1): 82-87.
CHEN Yifei,ZHANG Chenyue,ZHANG Jinglan,ZHANG Binjing,RONG Xin,HU Zhiai. Research advances of 3D printing in vascularization[J]. Stomatology, 2023, 43(1): 82-87.
表1
同轴打印常用的“鞘”“芯”材料"
作者、发表年 | “鞘”材料 | “鞘”细胞 | “芯”材料 | “芯”细胞 | 内径/μm | 壁厚/μm |
---|---|---|---|---|---|---|
Turner, 2020[ | GelMA | hBMSCs | peptide-CD | HUVECs | 400 | 400 |
Mao, 2021[ | 0.3%纯海藻 酸钠溶液 | 大鼠心肌细胞(H9C2) 2×106个/mL | 3%鼠尾Ⅰ型胶原 3%氯化钙 | HUVECs 2×106个/mL | ||
Shahabipour, 2022[ | 7%GelMA 2%藻酸盐 1%明胶 100 μg/mL HAp | 成骨细胞(MC3T3) 5×106个/mL | 5%GelMA 0.5%藻酸盐 2%明胶 100 μg/mL HAp | HUVECs 5×106个/mL | 210 | 210 |
Taymour, 2021[ | 9%algMC | 人肝细胞癌细胞系(HepG2) | 含纤维蛋白和人血浆的9%algMC | 小鼠NIH 3T3成纤维细胞系 | 400 | 400 |
Shao, 2020[ | 5%GelMA | 人乳腺细胞系(MDA-MB-231)2×106个/mL或小鼠成骨细胞13细胞系(MC3T3-E1)1×106个/mL | 5%明胶 | HUVECs 2×106个/mL | 等效直径 200~1 000 |
[1] | 王舸, 谢利, 田卫东. 牙髓再生中促进血管化策略的新进展[J]. 中国组织工程研究, 2022, 26(30):4904-4911. |
[2] | 蒋欣泉. 仿生策略用于口腔颌面部骨再生与牙种植的研究进展[J]. 华西口腔医学杂志, 2021, 39(2):123-128. |
[3] |
Diomede F, Marconi GD, Fonticoli L, et al. Functional relation-ship between osteogenesis and angiogenesis in tissue regeneration[J]. Int J Mol Sci, 2020, 21(9):3242.
doi: 10.3390/ijms21093242 |
[4] | Zhang XL, Wang YM, Chu K, et al. The application of PRP combined with TCP in repairing avascular necrosis of the femoral head after femoral neck fracture in rabbit[J]. Eur Rev Med Pharmacol Sci, 2018, 22(4):903-909. |
[5] |
Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs[J]. Lab Chip, 2014, 14(13):2202-2211.
doi: 10.1039/c4lc00030g pmid: 24860845 |
[6] |
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials[J]. Semin Immunol, 2017, 29:72-91.
doi: S1044-5323(16)30110-5 pmid: 28274693 |
[7] | 张艳珉, 姜治伟, 杨国利, 等. 脱细胞外基质支架材料在骨再生中的应用及研究进展[J]. 口腔医学, 2020, 40(1):63-66,69. |
[8] | 莫剑玲, 何少茹, 冯博文, 等. 构建预血管化细胞膜片及血管形成相关因子的表达[J]. 中国组织工程研究, 2021, 25(22):3479-3486. |
[9] | 康兴, 马正慧, 周欢娣, 等. 3D打印技术在医学中的应用[J]. 河北医科大学学报, 2021, 42(8):989-992. |
[10] |
Li JP, Chen MJ, Fan XQ, et al. Recent advances in bioprinting techniques:Approaches, applications and future prospects[J]. J Transl Med, 2016, 14:271.
doi: 10.1186/s12967-016-1028-0 |
[11] |
Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Sci Adv, 2015, 1(9):e1500758.
doi: 10.1126/sciadv.1500758 |
[12] |
Hua WJ, Mitchell K, Raymond L, et al. Fluid bath-assisted 3D printing for biomedical applications:From pre- to postprinting stages[J]. ACS Biomater Sci Eng, 2021, 7(10):4736-4756.
doi: 10.1021/acsbiomaterials.1c00910 |
[13] |
Jin YF, Chai WX, Huang Y. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80:313-325.
doi: 10.1016/j.msec.2017.05.144 |
[14] |
McCormack A, Highley CB, Leslie NR, et al. 3D printing in suspension baths:Keeping the promises of bioprinting afloat[J]. Trends Biotechnol, 2020, 38(6):584-593.
doi: S0167-7799(19)30315-4 pmid: 31955894 |
[15] |
Compaan AM, Song KD, Chai WX, et al. Cross-linkable microgel composite matrix bath for embedded bioprinting of perfusable tissue constructs and sculpting of solid objects[J]. ACS Appl Mater Interfaces, 2020, 12(7):7855-7868.
doi: 10.1021/acsami.9b15451 |
[16] |
Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks[J]. Adv Mater, 2011, 23(24):H178-H183.
doi: 10.1002/adma.201004625 |
[17] |
Fitzsimmons RE, Aquilino MS, Quigley J, et al. Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels[J]. Bioprinting, 2018, 9:7-18.
doi: 10.1016/j.bprint.2018.02.001 |
[18] |
Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting:An overview[J]. Biomater Sci, 2018, 6(5):915-946.
doi: 10.1039/C7BM00765E |
[19] | Kreimendahl F, Kniebs C, Tavares Sobreiro AM, et al. FRESH bioprinting technology for tissue engineering-the influence of printing process and bioink composition on cell behavior and vascularization[J]. J Appl Biomater Funct Mater, 2021, 19:228080002110288 |
[20] |
Afghah F, Altunbek M, Dikyol C, et al. Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures[J]. Sci Rep, 2020, 10(1):5257.
doi: 10.1038/s41598-020-61606-x pmid: 32210259 |
[21] |
Shao L, Gao Q, Xie CQ, et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs[J]. Biofabrication, 2020, 12(3):035014.
doi: 10.1088/1758-5090/ab7e76 |
[22] |
Maloney E, Clark C, Sivakumar H, et al. Immersion bioprinting of tumor organoids in multi-well plates for increasing chemotherapy screening throughput[J]. Micromachines, 2020, 11(2):208.
doi: 10.3390/mi11020208 |
[23] |
Jones CM, Baker-Groberg SM, Cianchetti FA, et al. Measurement science in the circulatory system[J]. Cell Mol Bioeng, 2014, 7(1):1-14.
pmid: 24563678 |
[24] |
Turner PR, Murray E, McAdam CJ, et al. Peptide chitosan/dextran core/shell vascularized 3D constructs for wound healing[J]. ACS Appl Mater Interfaces, 2020, 12(29):32328-32339.
doi: 10.1021/acsami.0c07212 |
[25] | Mao M, Liang HT, He JK, et al. Coaxial electrohydrodynamic bioprinting of pre-vascularized cell-laden constructs for tissue engineering[J]. Int J Bioprint, 2021, 7(3):362. |
[26] |
Shahabipour F, Tavafoghi M, Aninwene GEI, et al. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models[J]. J Biomed Mater Res A, 2022, 110(5):1077-1089.
doi: 10.1002/jbm.a.37354 pmid: 35025130 |
[27] |
Taymour R, Kilian D, Ahlfeld T, et al. 3D bioprinting of hepatocytes:Core-shell structured co-cultures with fibroblasts for enhanced functionality[J]. Sci Rep, 2021, 11(1):5130.
doi: 10.1038/s41598-021-84384-6 pmid: 33664366 |
[28] |
Yin J, Yan ML, Wang YC, et al. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy[J]. ACS Appl Mater Interfaces, 2018, 10(8):6849-6857.
doi: 10.1021/acsami.7b16059 |
[29] |
Zhang XJ, Zhou JP, Xu Y. Experimental study on preparation of coaxial drug-loaded tissue-engineered bone scaffold by 3D printing technology[J]. Proc Inst Mech Eng H, 2020, 234(4):309-322.
doi: 10.1177/0954411919890422 |
[30] |
Freeman FE, Pitacco P, et al. 3D bioprin-ting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration[J]. Sci Adv, 2020, 6(33):eabb5093.
doi: 10.1126/sciadv.abb5093 |
[31] |
Piedade AP. 4Dprinting:The shape-morphing in additive manufacturing[J]. J Funct Biomater, 2019, 10(1):9.
doi: 10.3390/jfb10010009 |
[32] | Yang GH, Yeo M, Koo YW, et al. 4D bioprinting:Technological advances in biofabrication[J]. Macromol Biosci, 2019, 19(5):e1800441. |
[33] |
Li YC, Zhang YS, Akpek A, et al. 4D bioprinting:The next-generation technology for biofabrication enabled by stimuli-responsive materials[J]. Biofabrication, 2016, 9(1):012001.
doi: 10.1088/1758-5090/9/1/012001 |
[34] |
Kirillova A, Maxson R, Stoychev G, et al. 4D biofabrication using shape-morphing hydrogels[J]. Adv Mater, 2017, 29(46):1703443.
doi: 10.1002/adma.201703443 |
[35] |
Momeni F, Ni J. Laws of 4D printing[J]. Engineering, 2020, 6(9):1035-1055.
doi: 10.1016/j.eng.2020.01.015 |
[36] | Arakawa CK, Badeau BA, Zheng Y, et al. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation[J]. Adv Mater, 2017, 29(37):10.1002/adma.201703156. |
[37] |
Lai JH, Li JZ, Wang M. 3D Printed porous tissue engineering scaffolds with the self-folding ability and controlled release of growth factor[J]. MRS Commun, 2020, 10(4):579-586.
doi: 10.1557/mrc.2020.65 |
[38] |
Song KH, Highley CB, Rouff A, et al. Complex 3D-printed microchannels within cell-degradable hydrogels[J]. Adv Funct Mater, 2018, 28(31):1801331.
doi: 10.1002/adfm.201801331 |
[39] |
Lukin I, Musquiz S, Erezuma I, et al. Can 4D bioprinting revolutionize drug development?[J]. Expert Opin Drug Discov, 2019, 14(10):953-956.
doi: 10.1080/17460441.2019.1636781 |
[40] |
Willemen NGA, Morsink MAJ, Veerman D, et al. From oral formulations to drug-eluting implants:Using 3D and 4D printing to develop drug delivery systems and personalized medicine[J]. Bio Des Manuf, 2022, 5(1):85-106.
doi: 10.1007/s42242-021-00157-0 |
[41] |
Seo JW, Shin SR, Park YJ, et al. Hydrogel production platform with dynamic movement using photo-crosslinkable/temperature reversible chitosan polymer and stereolithography 4D printing technology[J]. Tissue Eng Regen Med, 2020, 17(4):423-431.
doi: 10.1007/s13770-020-00264-6 pmid: 32441008 |
[42] |
Stroganov V, Zakharchenko S, Sperling E, et al. Biodegradable self-folding polymer films with controlled thermo-triggered folding[J]. Adv Funct Mater, 2014, 24(27):4357-4363.
doi: 10.1002/adfm.201400176 |
[43] |
Yang S, Tang H, Feng CM, et al. The research on multi-material 3D vascularized network integrated printing technology[J]. Micromachines, 2020, 11(3):237.
doi: 10.3390/mi11030237 |
[44] | Parfenov VA, Koudan EV, Krokhmal AA, et al. Biofabrication of a functional tubular construct from tissue spheroids using magnetoacoustic levitational directed assembly[J]. Adv Healthc Mater, 2020, 9(24):e2000721. |
[45] |
Parfenov VA, Mironov VA, van Kampen KA, et al. Scaffold-free and label-free biofabrication technology using levitational assembly in a high magnetic field[J]. Biofabrication, 2020, 12(4):045022.
doi: 10.1088/1758-5090/ab7554 |
[46] | 张宇, 张曦木. 三维生物打印在口腔软组织组织工程中的应用[J]. 中华口腔医学杂志, 2021, 56(7):613-619. |
[47] |
Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels[J]. Sci Adv, 2019, 5(9):eaaw2459.
doi: 10.1126/sciadv.aaw2459 |
[48] |
Jeon O, Bin Lee Y, Hinton TJ, et al. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues[J]. Mater Today Chem, 2019, 12:61-70.
doi: 10.1016/j.mtchem.2018.11.009 pmid: 30778400 |
[49] |
Twohig C, Helsinga M, Mansoorifar A, et al. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123:111976.
doi: 10.1016/j.msec.2021.111976 |
[50] | Li CD, Han XY, Ma ZJ, et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants[J]. Adv Healthc Mater, 2022, 11(4):e2101836. |
[51] |
Benmeridja L, de Moor L, de Maere E, et al. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting[J]. J Tissue Eng Regen Med, 2020, 14(6):840-854.
doi: 10.1002/term.3051 pmid: 32336037 |
[52] |
Duarte Campos DF, Zhang SY, Kreimendahl F, et al. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration[J]. Connect Tissue Res, 2020, 61(2):205-215.
doi: 10.1080/03008207.2019.1640217 |
[53] | Yan YF, Chen H, Zhang HB, et al. Vascularized 3D printed scaffolds for promoting bone regeneration[J]. Biomaterials, 2019(190/191):97-110. |
[1] | 廖梦圆 严斌 吴大明 孙志达 颜越 戴月明 谢海峰. 一种新型数字化桩核修复技术[J]. , 2021, 41(9): 825-829. |
[2] | 谢明杰 李潇. 影响3D打印的口腔修复体精密度的因素[J]. , 2018, 38(9): 860-864. |
[3] | 吴坡 羊书勇 鄢兰元 蒋佶 李焰 李浩 郑维银. 3D打印导板在头颈晚期恶性肿瘤125I粒子[J]. , 2018, 38(8): 708-712. |
[4] | 丁刘闯 赵小琦 韩祥祯 周琦琪 宋艳艳 张梦雪 何惠宇. 3D打印聚乙烯醇/纳米羟基磷灰石支架与丝素蛋白/聚乙烯醇/纳米羟基磷灰石支架的性能比较[J]. , 2018, 38(7): 592-596. |
[5] | 魏天骄 廖国婷 王柳力 郭欣 冯剑桥. 3D打印美学模板冠边缘适合性的初步研究[J]. , 2018, 38(3): 249-254. |
[6] | 李杨 徐增琦 詹甜甜 高 洁 程 杰 吴煜农 叶金海. 包载血管内皮生长因子的乙二胺/聚己内酯微囊的制备及其生物活性的研究[J]. , 2016, 36(9): 778-783. |
[7] | 郑维银 羊书勇 李浩 吴坡. 个体化钛网支架复合游离皮瓣修复上颌骨缺损初步研究[J]. , 2016, 36(2): 154-157. |
[8] | 林园园 郑秀丽 廖国婷 魏天骄 冯剑桥. 3D打印无牙颌个别托盘的初步研究[J]. , 2016, 36(12): 1065-1069. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1054
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||