口腔医学 ›› 2023, Vol. 43 ›› Issue (10): 950-954.doi: 10.13591/j.cnki.kqyx.2023.10.017
修回日期:
2022-08-17
出版日期:
2023-10-28
发布日期:
2023-10-20
通讯作者:
高莺
E-mail:flygaoying1999@163.com
Revised:
2022-08-17
Online:
2023-10-28
Published:
2023-10-20
摘要:
静电纺丝技术是在高压静电场作用下利用可溶性或易熔性聚合物制备出纳米级直径纤维的方法。这些纳米纤维具有比表面积大、与细胞外基质高度匹配、易于表面功能化等优势,同时在静电纺丝过程中还可通过不同的改性方法或加入无机粒子、抗菌剂、酶等添加剂对纳米纤维进行修饰,以满足不同的临床需求。该文就静电纺丝纳米纤维在口腔种植中的应用作一综述。
中图分类号:
张琛, 高莺. 静电纺丝纳米纤维在口腔种植的应用研究进展[J]. 口腔医学, 2023, 43(10): 950-954.
ZHANG Chen, GAO Ying. Research progress of electrospun nanofibers’ application in oral implantology[J]. Stomatology, 2023, 43(10): 950-954.
[1] | 张成, 芦笛, 刘宗响, 等. 褪黑素在口腔种植治疗中的研究进展[J]. 口腔医学, 2022, 42(2):184-187. |
[2] |
Nhlapo N, Dzogbewu TC, de Smidt O. Nanofiber polymers for coating titanium-based biomedical implants[J]. Fibers, 2022, 10(4):36.
doi: 10.3390/fib10040036 |
[3] |
Berton F, Porrelli D, di Lenarda R, et al. A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery[J]. Nanomaterials (Basel), 2019, 10(1):16.
doi: 10.3390/nano10010016 |
[4] |
Song R, Murphy M, Li CS, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Des Devel Ther, 2018, 12: 3117-3145.
doi: 10.2147/DDDT |
[5] |
Keshvardoostchokami M, Majidi SS, Huo PP, et al. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering[J]. Nanomaterials (Basel), 2020, 11(1):21.
doi: 10.3390/nano11010021 |
[6] |
Nemati S, Kim SJ, Shin YM, et al. Current progress in application of polymeric nanofibers to tissue engineering[J]. Nano Converg, 2019, 6(1):36.
doi: 10.1186/s40580-019-0209-y pmid: 31701255 |
[7] |
Li LF, Zhang WZ, Huang MJ, et al. Preparation of gelatin/genipin nanofibrous membrane for tympanic member repair[J]. J Biomater Sci Polym Ed, 2018, 29(17):2154-2167.
doi: 10.1080/09205063.2018.1528519 pmid: 30295148 |
[8] |
Filippi M, Born G, Chaaban M, et al. Natural polymeric scaffolds in bone regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 474.
doi: 10.3389/fbioe.2020.00474 |
[9] |
Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun composite nanofibers for tissue regeneration[J]. J Nanosci Nanotechnol, 2011, 11(4):3039-3057.
pmid: 21776670 |
[10] |
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(Epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering[J]. Biomaterials, 2008, 29(34):4532-4539.
doi: 10.1016/j.biomaterials.2008.08.007 pmid: 18757094 |
[11] |
Aldemir Dikici B, Dikici S, Reilly GC, et al. A novel bilayer polycaprolactone membrane for guided bone regeneration: Combining electrospinning and emulsion templating[J]. Materials (Basel), 2019, 12(16):2643.
doi: 10.3390/ma12162643 |
[12] |
He M, Wang Q, Xie L, et al. Hierarchically multi-functionalized graded membrane with enhanced bone regeneration and self-defensive antibacterial characteristics for guided bone regeneration[J]. Chem Eng J, 2020, 398:125542.
doi: 10.1016/j.cej.2020.125542 |
[13] |
Lin WM, Chen M, Qu T, et al. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(4):1311-1321.
doi: 10.1002/jbm.b.v108.4 |
[14] |
Lian MF, Sun BB, Qiao ZG, et al. Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration[J]. Colloids Surf B Biointerfaces, 2019, 176:219-229.
doi: 10.1016/j.colsurfb.2018.12.071 |
[15] |
Yu D, Huang CS, Jiang C, et al. Features of a simvastatin-loaded multi-layered co-electrospun barrier membrane for guided bone regeneration[J]. Exp Ther Med, 2021, 22(1):713.
doi: 10.3892/etm.2021.10145 pmid: 34007322 |
[16] |
Jia Z, Liu Y, Wang Y, et al. Retraction: Gas-foaming three-dimensional electrospun nanofiber scaffold improved three-dimensional cartilage regeneration (2021 Mater. Res. Express 8 085403)[J]. Mater Res Express, 2022, 9(6):069701.
doi: 10.1088/2053-1591/ac6749 |
[17] |
Webb BCW, Glogauer M, Santerre JP. The structure and function of next-generation gingival graft substitutes-A perspective on multilayer electrospun constructs with consideration of vascularization[J]. Int J Mol Sci, 2022, 23(9):5256.
doi: 10.3390/ijms23095256 |
[18] |
Hejazi F, Mirzadeh H. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying[J]. J Mater Sci Mater Med, 2016, 27(9):143.
doi: 10.1007/s10856-016-5748-8 |
[19] | Dong JH, Jhu RJ, Wang LP, et al. A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods[J]. Microsyst Technol, 2019:1-15. |
[20] |
Li QF, Wang ZL. Involvement of FAK/P38 signaling pathways in mediating the enhanced osteogenesis induced by nano-graphene oxide modification on titanium implant surface[J]. Int J Nanomedicine, 2020, 15:4659-4676.
doi: 10.2147/IJN.S245608 |
[21] |
Wang X, Ning BY, Pei XB. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties[J]. Colloids Surf B Biointerfaces, 2021, 208: 112055.
doi: 10.1016/j.colsurfb.2021.112055 |
[22] | 廖安琪, 杨仁丽, 杨醒眉. 种植体周围炎的免疫应答机制及其影响因素的研究进展[J]. 口腔医学, 2021, 41(12):1143-1147. |
[23] |
Wu ZZ, Bao CY, Zhou SB, et al. The synergetic effect of bioactive molecule-loaded electrospun core-shell fibres for reconstruction of critical-sized calvarial bone defect-The effect of synergetic release on bone formation[J]. Cell Prolif, 2020, 53(4):e12796.
doi: 10.1111/cpr.v53.4 |
[24] |
Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review[J]. Pharmaceutics, 2019, 11(7):305.
doi: 10.3390/pharmaceutics11070305 |
[25] | 胡姝颖, 陈汉帮, 陈刚, 等. “壳-芯”结构电纺纤维膜对MC3T3-E1细胞体外早期成骨分化的影响[J]. 口腔医学, 2018, 38(6):485-490. |
[26] |
Song W, Seta J, Chen L, et al. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection[J]. Biomed Mater, 2017, 12(4):045008.
doi: 10.1088/1748-605X/aa6a26 |
[27] |
Kiran ASK, Kumar TSS, Sanghavi R, et al. Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings[J]. Nanomaterials (Basel), 2018, 8(10):860.
doi: 10.3390/nano8100860 |
[28] |
Wei YJ, Liu ZQ, Zhu X, et al. Dual directions to address the problem of aseptic loosening via electrospun PLGA @aspirin nanofiber coatings on titanium[J]. Biomaterials, 2020, 257:120237.
doi: 10.1016/j.biomaterials.2020.120237 |
[29] |
Das S, Dholam K, Gurav S, et al. Accentuated osseointegration in osteogenic nanofibrous coated titanium implants[J]. Sci Rep, 2019, 9(1):17638.
doi: 10.1038/s41598-019-53884-x pmid: 31819073 |
[30] |
Keceli HG, Bayram C, Celik E, et al. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration[J]. J Periodontal Res, 2020, 55(5):694-704.
doi: 10.1111/jre.12756 pmid: 32776328 |
[31] |
Li X, Tang L, Lin YF, et al. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis[J]. Clin Implant Dent Relat Res, 2018, 20(5):793-798.
doi: 10.1111/cid.2018.20.issue-5 |
[32] |
Lee SJ, Heo DN, Lee D, et al. One-step fabrication of AgNPs embedded hybrid dual nanofibrous oral wound dressings[J]. J Biomed Nanotechnol, 2016, 12(11):2041-2050.
pmid: 29364618 |
[33] |
Ephros H, Kim S, DeFalco R. Peri-implantitis: Evaluation and management[J]. Dent Clin North Am, 2020, 64(2):305-313.
doi: S0011-8532(19)30100-4 pmid: 32111270 |
[34] |
Schulz S, Angarano M, Fabritius M, et al. Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects[J]. Tissue Eng Part A, 2014, 20(13/14):1935-1947.
doi: 10.1089/ten.tea.2013.0594 |
[35] | 朱舟. 载成血管药取向性纤维静电纺丝纤维膜促种植手术软组织创口愈合作用研究[C]. 第十二次全国口腔修复学学术会议, 2018: 35. |
[36] |
Zhu Z, Liu YH, Xue YY, et al. Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis[J]. ACS Appl Mater Interfaces, 2019, 11(39):36141-36153.
doi: 10.1021/acsami.9b13271 |
[37] |
Gao ZJ, Wang QX, Yao QQ, et al. Application of electrospun nanofiber membrane in the treatment of diabetic wounds[J]. Pharmaceutics, 2021, 14(1):6.
doi: 10.3390/pharmaceutics14010006 |
[38] |
Chen SX, Ge LP, Mueller A, et al. Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver[J]. Nanomedicine, 2017, 13(4):1435-1445.
doi: S1549-9634(17)30018-7 pmid: 28185940 |
[39] |
Gu ZQ, Yin HY, Wang J, et al. Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures[J]. Colloids Surf B Biointerfaces, 2018, 161:331-338.
doi: 10.1016/j.colsurfb.2017.10.066 |
[1] | 冯泽华, 邱爽, 徐萱雯, 郑凯, 徐艳. 介孔生物活性玻璃/聚己内酯短纤维骨组织工程支架体外抑炎功能研究[J]. 口腔医学, 2023, 43(7): 592-599. |
[2] | 牛丽娜,沈敏娟,方明. 口腔种植成骨材料的研究现状及进展[J]. 口腔医学, 2023, 43(1): 11-17. |
[3] | 杨思嘉, 沈晓艇, 包雨晨, 何福明. 帐篷钉技术在牙槽嵴骨增量中的应用研究[J]. 口腔医学, 2022, 42(5): 462-466. |
[4] | 刘玉洁 李保胜 张震阳 欧燕珍 孟维艳. 钛表面纳米形貌及特性对成纤维细胞影响的研究进展[J]. , 2021, 41(8): 751-754. |
[5] | 宋应亮 赵文爽 宋爽. 帐篷螺丝技术与常规GBR在水平骨增量的临床疗效对比[J]. , 2021, 41(2): 103-109. |
[6] | 吴岸谦 于洪强 丁鑫鑫 周延民. 富血小板纤维蛋白在口腔种植学中应用进展[J]. , 2019, 39(1): 71-76. |
[7] | 郝柯屹 田杰华 吕鸣樾 刘焱萍 魏冬豪 张宇. GBR植骨相较于自体骨移植远期稳定性的优势[J]. , 2019, 39(1): 60-62. |
[8] | 胡姝颖 陈汉帮 陈刚 周雪锋 刘俊 章非敏. “壳-芯”结构电纺纤维膜对MC3T3-E1细胞体外早期成骨分化的影响[J]. , 2018, 38(6): 485-490. |
[9] | 周琳怡. 光动力疗法在口腔种植体周围炎中应用进展[J]. , 2018, 38(6): 569-572. |
[10] | 刘亚静 汤春波. All-on-four技术的临床应用与发展[J]. , 2018, 38(11): 1039-1042. |
[11] | 蒋晔 张志宏 刘红红. 可视化技术在口腔种植的应用进展[J]. , 2018, 38(11): 1053-1056. |
[12] | 吐逊阿依·阿迪力 古丽再努?依不拉音 任家卉 尼加提·吐尔逊. 口腔种植义齿修复失败16例原因分析[J]. , 2017, 37(9): 815-818. |
[13] | 叶淑华 何福明. 口腔种植早期失败原因分析[J]. , 2017, 37(7): 642-646. |
[14] | 陈宋洁 缪舒舒 胡惠 倪凌晨 赵翚. 早期不同时间种植体骨界面改建的骨组织定量测定[J]. , 2017, 37(5): 398-402. |
[15] | 王超炜 周益 王慧明. 骨相关细胞的自噬及其在口腔种植中的作用[J]. , 2016, 36(5): 458-461. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||