[1] |
Alikhani T, Daie Ghazvini R, Mirzaii M, et al. Drug resistance and biofilm formation in Candida species of vaginal origin[J]. Iran J Public Health, 2022, 51(4):913-918.
doi: 10.18502/ijph.v51i4.9253
pmid: 35936523
|
[2] |
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans[J]. Microb Pathog, 2022, 164: 105418.
|
[3] |
Feng WL, Yang J, Ma Y, et al. Aspirin and verapamil increase the sensitivity of Candida albicans to caspofungin under planktonic and biofilm conditions[J]. J Glob Antimicrob Resist, 2021, 24: 32-39.
|
[4] |
Liu SQ, Jiang LL, Miao HC, et al. Autophagy regulation of ATG13 and ATG27 on biofilm formation and antifungal resistance in Candida albicans[J]. Biofouling, 2022, 38(9):926-939.
|
[5] |
Shen JD, Ma M, Duan W, et al. Autophagy alters the susceptibility of Candida albicans biofilms to antifungal agents[J]. Microorganisms, 2023, 11(8):2015.
|
[6] |
张琴琴, 马鸣, 花荣, 等. 法尼醇对白念珠菌生物膜葡聚糖的影响及白念珠菌耐药相关性[J]. 口腔医学, 2023, 43(6):488-493.
|
[7] |
钱芳, 魏昕, 许雯倩, 等. XTT减低法检测法尼醇对白念珠菌生物被膜的抑制作用[J]. 口腔生物医学, 2014, 5(2):82-85.
|
[8] |
Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms[J]. Antimicrob Agents Chemother, 2001, 45(9):2475-2479.
doi: 10.1128/AAC.45.9.2475-2479.2001
pmid: 11502517
|
[9] |
Meletiadis J, Mouton JW, Meis JFGM, et al. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates[J]. Antimicrob Agents Chemother, 2003, 47(1):106-117.
doi: 10.1128/AAC.47.1.106-117.2003
pmid: 12499177
|
[10] |
Lewis RE, Diekema DJ, Messer SA, et al. Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species[J]. J Antimicrob Chemother, 2002, 49(2):345-351.
|
[11] |
Prichard MN, Prichard LE, Shipman C Jr. Strategic design and three-dimensional analysis of antiviral drug combinations[J]. Antimicrob Agents Chemother, 1993, 37(3):540-545.
doi: 10.1128/AAC.37.3.540
pmid: 8384816
|
[12] |
Jiang LL, Zheng LX, Sun K, et al. In vitro and in vivo evaluation of the antifungal activity of fluoxetine combined with antifungals against Candida albicans biofilms and oral candidiasis[J]. Biofouling, 2020, 36(5):537-548.
|
[13] |
Koshikawa T, Abe M, Nagi M, et al. Biofilm-formation capability depends on environmental oxygen concentrations in Candida species[J]. J Infect Chemother, 2022, 28(5):643-650.
doi: 10.1016/j.jiac.2022.01.010
pmid: 35115240
|
[14] |
Priya A, Pandian SK. Biofilm and hyphal inhibitory synergistic effects of phytoactives piperine and cinnamaldehyde against Candida albicans[J]. Med Mycol, 2022, 60(8):myac039.
|
[15] |
Vaňková E, Kašparová P, Dulíčková N, et al. Combined effect of lasioglossin LL-Ⅲ derivative with azoles against Candida albicans virulence factors: Biofilm Formation, phospholipases, proteases and hemolytic activity[J]. FEMS Yeast Res, 2020, 20(3):foaa020.
|
[16] |
Ma TY, Yu QL, Ma CC, et al. Role of the inositol polyphosphate kinase Vip1 in autophagy and pathogenesis in Candida albicans[J]. Future Microbiol, 2020, 15: 1363-1377.
|
[17] |
Bastidas RJ, Heitman J, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans[J]. PLoS Pathog, 2009, 5(2):e1000294.
|
[18] |
Silva RCMC, Tan L, Rodrigues DA, et al. Chloroquine inhibits pro-inflammatory effects of heme on macrophages and in vivo[J]. Free Radic Biol Med, 2021, 173: 104-116.
|
[19] |
Song ZL, Liu YT, Xie CH, et al. Synthesis and pharmacological evaluation of choroquine derivatives bearing long aminated side chains as antivirus and anti-inflammatory agents[J]. Bioorg Chem, 2021, 116: 105346.
|
[20] |
Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, et al. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections[J]. Infect Dis Ther, 2021, 10(1):115-147.
|
[21] |
Gao Y, Zhang ZH, Lun ZC, et al. Synergistic effects of fluconazole combined with doxycycline against dual-species cultures of Candida albicans and Staphylococcus epidermidis and the mechanisms of action[J]. Microb Drug Resist, 2022, 28(5):525-535.
|
[22] |
Lewis RE, Kontoyiannis DP. Rationale for combination antifungal therapy[J]. Pharmacotherapy, 2001, 21(8 Pt 2):149S-164S.
pmid: 11501988
|
[23] |
Su S, Yan HY, Min L, et al. The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy[J]. Expert Rev Anti Infect Ther, 2022, 20(2):161-178.
|
[24] |
Boonstra JM, Märtson AG, Sandaradura I, et al. Optimization of fluconazole dosing for the prevention and treatment of invasive candidiasis based on the pharmacokinetics of fluconazole in critically ill patients[J]. Antimicrob Agents Chemother, 2021, 65(3):e01554-e01520.
|
[25] |
Sastré-Velásquez LE, Dallemulle A, Kühbacher A, et al. The fungal expel of 5-fluorocytosine derived fluoropyrimidines mitigates its antifungal activity and generates a cytotoxic environment[J]. PLoS Pathog, 2022, 18(12):e1011066.
|
[26] |
Krishnan-Natesan S. Terbinafine: A pharmacological and clinical review[J]. Expert Opin Pharmacother, 2009, 10(16):2723-2733.
doi: 10.1517/14656560903307462
pmid: 19874252
|
[27] |
Hernández-Cervantes A, Znaidi S, van Wijlick L, et al. A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans[J]. Nat Commun, 2020, 11(1):6224.
doi: 10.1038/s41467-020-20010-9
pmid: 33277479
|
[28] |
Xiao J, Zeng Y, Rustchenko E, et al. Dual transcriptome of Streptococcus mutans and Candida albicans interplay in biofilms[J]. J Oral Microbiol, 2022, 15(1):2144047.
|
[29] |
Wiederhold NP. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents[J]. J Fungi (Basel), 2022, 8(8):857.
|