口腔医学 ›› 2024, Vol. 44 ›› Issue (9): 699-704.doi: 10.13591/j.cnki.kqyx.2024.09.010
收稿日期:
2023-12-11
出版日期:
2024-09-28
发布日期:
2024-09-10
通讯作者:
宫苹 E-mail:dentistgong@hotmail.com
基金资助:
ZHANG Qin1,XIANG Lin2,GONG Ping2()
Received:
2023-12-11
Online:
2024-09-28
Published:
2024-09-10
摘要:
溶血磷脂酸(lysophosphatidic acid,LPA)是机体内天然存在的一种小分子甘油磷脂。其在人体内分布广泛,与其受体LPA 1-6结合后,经复杂的下游信号转导机制,介导细胞增殖、迁移等多种细胞学行为,进而参与肿瘤发生发展、炎症、创伤愈合等生物学过程。近年来,LPA在调控骨代谢方面的作用受到越来越多的关注。它一方面可以直接作用于骨相关细胞,另一方面可以作为骨组织中神经-血管-免疫-骨的潜在交联因子,为骨改建提供良好的微环境,进一步影响骨再生。该文就溶血磷脂酸调控骨代谢作用的研究进展作一综述。
中图分类号:
张勤, 向琳, 宫苹. 溶血磷脂酸调控骨改建作用的研究进展[J]. 口腔医学, 2024, 44(9): 699-704.
ZHANG Qin, XIANG Lin, GONG Ping. Advances in lysophosphatidic acid for bone remodeling[J]. Stomatology, 2024, 44(9): 699-704.
[1] |
Olsen BR, Reginato AM, Wang WF. Bone development[J]. Annu Rev Cell Dev Biol, 2000, 16: 191-220.
pmid: 11031235 |
[2] | Nishimura I. Genetic networks in osseointegration[J]. J Dent Res, 2013, 92(12 Suppl): 109S-118S. |
[3] | Rodríguez-Gómez I, Mañas A, Losa-Reyna J, et al. Compositional influence of movement behaviors on bone health during aging[J]. Med Sci Sports Exerc, 2019, 51(8): 1736-1744. |
[4] | Lummis NC, Sánchez-Pavón P, Kennedy G, et al. LPA1/3overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction[J]. Sci Adv, 2019, 5(10): eaax2011. |
[5] |
Yang LP, Kraemer M, Fang XF, et al. LPA receptor 4 deficiency attenuates experimental atherosclerosis[J]. J Lipid Res, 2019, 60(5): 972-980.
doi: 10.1194/jlr.M091066 pmid: 30796085 |
[6] | Zhao PF, Wu S, Li Y, et al. LPA receptor1 antagonists as anticancer agents suppress human lung tumours[J]. Eur J Pharmacol, 2020, 868: 172886. |
[7] | Chen WM, Chiang JC, Lin YC, et al. Lysophosphatidic acid receptor LPA3 prevents oxidative stress and cellular senescence in Hutchinson-Gilford progeria syndrome[J]. Aging Cell, 2020, 19(1): e13064. |
[8] | Wu XN, Ma YY, Su NC, et al. Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration[J]. Prostaglandins Other Lipid Mediat, 2019, 143: 106335. |
[9] | Alioli C, Demesmay L, Peyruchaud O, et al. Autotaxin/lysophosphatidic acid axis: From bone biology to bone disorders[J]. Int J MolSci, 2022, 23(7): 3427. |
[10] | Cerutis DR, Weston MD, Miyamoto T. Entering, linked with the Sphinx: Lysophosphatidic acids everywhere, all at once, in the oral system and cancer[J]. Int J Mol Sci, 2023, 24(12): 10278. |
[11] |
Blackburn J, Mansell JP. The emerging role of lysophosphatidic acid (LPA) in skeletal biology[J]. Bone, 2012, 50(3): 756-762.
doi: 10.1016/j.bone.2011.12.002 pmid: 22193551 |
[12] | 吴湘楠, 马媛媛, 浩志超, 等. 溶血磷脂酸对骨组织细胞生物学调控功能的研究进展[J]. 华西口腔医学杂志, 2020, 38(3): 328-333. |
[13] | Eichholtz T, Jalink K, Fahrenfort I, et al. The bioactive phospholipid lysophosphatidic acid is released from activated platelets[J]. Biochem J, 1993, 291 (Pt 3):677-680. |
[14] |
Panupinthu N, Rogers JT, Zhao L, et al. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: A signaling axis promoting osteogenesis[J]. J Cell Biol, 2008, 181(5): 859-871.
doi: 10.1083/jcb.200708037 pmid: 18519738 |
[15] |
Panupinthu N, Zhao L, Possmayer F, et al. P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid[J]. J Biol Chem, 2007, 282(5): 3403-3412.
doi: 10.1074/jbc.M605620200 pmid: 17135244 |
[16] | Karagiosis SA, Karin NJ. Lysophosphatidic acid induces osteocyte dendrite outgrowth[J]. Biochem Biophys Res Commun, 2007, 357(1): 194-199. |
[17] |
Yanagida K, Ishii S. Non-Edg family LPA receptors: The cutting edge of LPA research[J]. J Biochem, 2011, 150(3): 223-232.
doi: 10.1093/jb/mvr087 pmid: 21746769 |
[18] |
Choi JW, Herr DR, Noguchi K, et al. LPA receptors: Subtypes and biological actions[J]. Annu Rev Pharmacol Toxicol, 2010, 50: 157-186.
doi: 10.1146/annurev.pharmtox.010909.105753 pmid: 20055701 |
[19] |
Cho KH, JeongBY, Park CG, et al. The YB-1/EZH2/amphiregulin signaling axis mediates LPA-induced breast cancer cell invasion[J]. Arch Pharm Res, 2019, 42(6): 519-530.
doi: 10.1007/s12272-019-01149-6 pmid: 31004257 |
[20] | Wu XN, Ma YY, Chen HL, et al. Lysophosphatidic acid induces interleukin-6 and CXCL15 secretion from MLO-Y4 cells through activation of the LPA1 receptor and PKCθ signaling pathway[J]. Int Immunopharmacol, 2019, 74: 105664. |
[21] | Lorthongpanich C, Thumanu K, Tangkiettrakul K, et al. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs[J]. Stem Cell Res Ther, 2019, 10(1): 402. |
[22] |
Masiello LM, Fotos JS, Galileo DS, et al. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells[J]. Bone, 2006, 39(1): 72-82.
pmid: 16487757 |
[23] | Mansell JP, Nowghani M, Pabbruwe M, et al. Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: Requirement of albumin-bound LPA[J]. Prostaglandins Other Lipid Mediat, 2011, 95(1/2/3/4): 45-52. |
[24] | Liu YB, Kharode Y, Bodine PVN, et al. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4[J]. J Cell Biochem, 2010, 109(4): 794-800. |
[25] |
Grey A, Banovic T, Naot D, et al. Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve G(i) proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases[J]. Endocrinology, 2001, 142(3): 1098-1106.
pmid: 11181524 |
[26] |
Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, et al. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass[J]. Bone, 2011, 49(3): 395-403.
doi: 10.1016/j.bone.2011.04.018 pmid: 21569876 |
[27] | Alioli CA, Demesmay L, Laurencin-Dalacieux S, et al. Expression of the type 1 lysophosphatidic acid receptor in osteoblastic cell lineage controls both bone mineralization and osteocyte specification[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2020, 1865(8): 158715. |
[28] |
Karagiosis SA, Chrisler WB, Bollinger N, et al. Lysophosphatidic acid-induced ERK activation and chemotaxis in MC3T3-E1 preosteoblasts are independent of EGF receptor transactivation[J]. J Cell Physiol, 2009, 219(3): 716-723.
doi: 10.1002/jcp.21720 pmid: 19189345 |
[29] | Wang XY, Fan XS, Cai L, et al. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis[J]. Apoptosis, 2015, 20(3): 273-284. |
[30] |
Chen JH, Baydoun AR, Xu RX, et al. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis[J]. Stem Cells, 2008, 26(1): 135-145.
doi: 10.1634/stemcells.2007-0098 pmid: 17932426 |
[31] | Yao SC, Zhang YN, Wang XY, et al. Pigment epithelium-derived factor (PEDF) protects osteoblastic cell line from glucocorticoid-induced apoptosis via PEDF-R[J]. Int J Mol Sci, 2016, 17(5): 730. |
[32] | Wang JS, Kamath T, Mazur CM, et al. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin[J]. Nat Commun, 2021, 12(1): 6271. |
[33] |
Waters KM, Jacobs JM, Gritsenko MA, et al. Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth[J]. Bone, 2011, 48(6): 1328-1335.
doi: 10.1016/j.bone.2011.02.020 pmid: 21356339 |
[34] |
David M, Machuca-Gayet I, Kikuta J, et al. Lysophosphatidic acid receptor type 1 (LPA1) plays a functional role in osteoclast differentiation and bone resorption activity[J]. J Biol Chem, 2014, 289(10): 6551-6564.
doi: 10.1074/jbc.M113.533232 pmid: 24429286 |
[35] | Kim TY, Kim A, Aryal YP, et al. Functional modulation of lysophosphatidic acid type 2 G-protein coupled receptor facilitates alveolar bone formation[J]. J Cell Physiol, 2024, 239(1): 112-123. |
[36] | Kostadinova L, Shive CL, Anthony DD. Elevated autotaxin and LPA levels during chronic viral hepatitis and hepatocellular carcinoma associate with systemic immune activation[J]. Cancers, 2019, 11(12): 1867. |
[37] | Gaire BP, Sapkota A, Song MR, et al. Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia[J]. J Neuroinflammation, 2019, 16(1): 170. |
[38] | Peng J, Liu MM, Liu HH, et al. Lipoprotein (a)-mediated vascular calcification: Population-based and in vitro studies[J]. Metabolism, 2022, 127: 154960. |
[39] | Eghbali-Fatourechi GZ, Lamsam J, Fraser D, et al. Circulating osteoblast-lineage cells in humans[J]. N Engl J Med, 2005, 352(19): 1959-1966. |
[40] |
Offermanns S, Mancino V, Revel JP, et al. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency[J]. Science, 1997, 275(5299): 533-536.
doi: 10.1126/science.275.5299.533 pmid: 8999798 |
[41] | Kamijo H, Matsumura Y, Thumkeo D, et al. Impaired vascular remodeling in the yolk sac of embryos deficient in ROCK-Ⅰ and ROCK-Ⅱ[J]. Genes Cells, 2011, 16(10): 1012-1021. |
[42] |
Yasuda D, Kobayashi D, Akahoshi N, et al. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4[J]. J Clin Invest, 2019, 129(10): 4332-4349.
doi: 10.1172/JCI121955 pmid: 31335323 |
[43] | Zhao Y, Hasse S, Zhao CQ, et al. Targeting the autotaxin-Lysophosphatidic acid receptor axis in cardiovascular diseases[J]. Biochem Pharmacol, 2019, 164: 74-81. |
[44] |
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ Res, 2016, 118(4): 620-636.
doi: 10.1161/CIRCRESAHA.115.306301 pmid: 26892962 |
[45] | Lin CI, Chen CN, Huang MT, et al. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms[J]. Cell Signal, 2008, 20(10): 1804-1814. |
[46] | Gustin C, van Steenbrugge M, Raes M. Circulating osteoblast-lineage cells in humans[J]. N Engl J Med, 2005, 352(19): 1959-1966. |
[47] |
Nich C, Takakubo Y, Pajarinen J, et al. Macrophages-Key cells in the response to wear debris from joint replacements[J]. J Biomed Mater Res A, 2013, 101(10): 3033-3045.
doi: 10.1002/jbm.a.34599 pmid: 23568608 |
[48] | Vi L, Baht GS, Whetstone H, et al. Macrophages promote osteoblastic differentiation in-vivo: Implications in fracture repair and bone homeostasis[J]. J Bone Miner Res, 2015, 30(6): 1090-1102. |
[49] |
Chang MK, Raggatt LJ, Alexander KA, et al. Ostealtissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. J Immunol, 2008, 181(2): 1232-1244.
doi: 10.4049/jimmunol.181.2.1232 pmid: 18606677 |
[50] | Bastian O, Pillay J, Alblas J, et al. Systemic inflammation and fracture healing[J]. J Leukoc Biol, 2011, 89(5): 669-673. |
[51] | Wu AC, Raggatt LJ, Alexander KA, et al. Unraveling macrophage contributions to bone repair[J]. Bonekey Rep, 2013, 2: 373. |
[52] |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969.
doi: 10.1038/nri2448 pmid: 19029990 |
[53] |
Kozian DH, von Haeften E, Joho S, et al. Modulation of hexadecyl-LPA-mediated activation of mast cells and microglia by a chemical probe for LPA5[J]. Chembiochem, 2016, 17(9): 861-865.
doi: 10.1002/cbic.201500559 pmid: 26812365 |
[54] | Bai ZB, Cai LJ, Umemoto E, et al. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venulesis regulated by the autotaxin/lysophosphatidic acid axis[J]. J Immunol, 2013, 190(5): 2036-2048. |
[55] | Takeda A, Kobayashi D, Aoi K, et al. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility[J]. eLife, 2016, 5: e10561. |
[56] |
Ray R, Rai V. Lysophosphatidic acid converts monocytes into macrophages in both mice and humans[J]. Blood, 2017, 129(9): 1177-1183.
doi: 10.1182/blood-2016-10-743757 pmid: 28069607 |
[57] | Chen LM, Zhang J, Deng X, et al. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI[J]. Biochem Biophys Res Commun, 2017, 491(3): 587-594. |
[58] |
Rizza C, Leitinger N, Yue J, et al. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction[J]. Lab Invest, 1999, 79(10): 1227-1235.
pmid: 10532586 |
[59] | Hashimura S, Kido J, Matsuda R, et al. A low level of lysophosphatidic acid in human gingival crevicular fluid from patients with periodontitis due to high soluble lysophospholipase activity: Its potential protective role on alveolar bone loss by periodontitis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(7): 158698. |
[60] |
Lerner UH. Neuropeptidergic regulation of bone resorption and bone formation[J]. J Musculoskelet Neuronal Interact, 2002, 2(5): 440-447.
pmid: 15758412 |
[61] |
García-Castellano JM, Díaz-Herrera P, Morcuende JA. Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions[J]. Iowa Orthop J, 2000, 20: 49-58.
pmid: 10934625 |
[62] |
Beeve AT, Brazill JM, Scheller EL. Peripheral neuropathy as a component of skeletal disease in diabetes[J]. Curr Osteoporos Rep, 2019, 17(5): 256-269.
doi: 10.1007/s11914-019-00528-8 pmid: 31392667 |
[63] |
Inoue M, Rashid MH, Fujita R, et al. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling[J]. Nat Med, 2004, 10(7): 712-718.
doi: 10.1038/nm1060 pmid: 15195086 |
[64] | Ahn DK, Lee SY, Han SR, et al. Intratrigeminal ganglionic injection of LPA causes neuropathic pain-like behavior and demyelination in rats[J]. Pain, 2009, 146(1/2): 114-120. |
[65] |
Nieto-Posadas A, Picazo-Juárez G, Llorente I, et al. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site[J]. Nat Chem Biol, 2011, 8(1): 78-85.
doi: 10.1038/nchembio.712 pmid: 22101604 |
[66] |
Yu XJ, Lv LL, Zhang J, et al. Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats[J]. J Mol Histol, 2015, 46(2): 195-203.
doi: 10.1007/s10735-015-9611-x pmid: 25663522 |
[67] | Wang TL, GuoYJ, Yuan Y, et al. Deficiency of α Calcitonin-gene-related peptide impairs peri-implant angiogenesis and osseointegration via suppressive vasodilative activity[J]. Biochem Biophys Res Commun, 2018, 498(1): 139-145. |
[68] |
Xiang L, Ma L, Wei N, et al. Effect of lentiviral vector overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice[J]. Bone, 2017, 94: 135-140.
doi: S8756-3282(15)00320-8 pmid: 26265538 |
[69] | Mikami R, Mizutani K, Aoki A, et al. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1[J]. Lasers SurgMed, 2018, 50(4): 340-352. |
[70] | Xiao F, Zhou Y, Liu YF, et al. Inhibitory effect of Sirtuin6 (SIRT6) on osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Med Sci Monit, 2019, 25: 8412-8421. |
[71] |
Takahashi N, Matsuda Y, Sato K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP[J]. Sci Rep, 2016, 6: 29294.
doi: 10.1038/srep29294 pmid: 27388773 |
[72] |
Borrelli MJ, Youssef A, Boffa MB, et al. New frontiers in lp(a)-targeted therapies[J]. Trends Pharmacol Sci, 2019, 40(3): 212-225.
doi: S0165-6147(19)30015-X pmid: 30732864 |
[73] |
Julius U, Tselmin S, Schatz U, et al. Lipoprotein(a)-an interdisciplinary challenge[J]. Clin Res Cardiol Suppl, 2019, 14(Suppl 1): 20-27.
doi: 10.1007/s11789-019-00098-0 pmid: 30838556 |
[74] |
Soond SM, JrZamyatnin AA. Targeting G protein-coupled receptors in cancer therapy[J]. Adv Cancer Res, 2020, 145: 49-97.
doi: S0065-230X(19)30062-4 pmid: 32089165 |
[75] | Zhou Y, Little PJ, Ta HT, et al. Lysophosphatidic acid and its receptors: Pharmacology and therapeutic potential in atherosclerosis and vascular disease[J]. Pharmacol Ther, 2019, 204: 107404. |
[76] | Xing DL, Zuo W, Chen JH, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37380-37395. |
[77] | Baldwin F, Craig TJ, Shiel AI, et al. Polydopamine-lysophosphatidate-functionalisedtitanium: A novel hybrid surface finish for bone regenerative applications[J]. Molecules, 2020, 25(7): 1583. |
[78] |
Mansell JP, Barbour M, Moore C, et al. The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces[J]. Biomaterials, 2010, 31(2): 199-206.
doi: 10.1016/j.biomaterials.2009.09.035 pmid: 19796809 |
[79] | Bosetti M, Borrone A, Leigheb M, et al. *Injectable graft substitute active on bone tissue regeneration[J]. Tissue Eng Part A, 2017, 23(23/24): 1413-1422. |
[80] |
Might KR, Martinez SA, Karin N, et al. The effect of lysophosphatidic acid using a hydrogel or collagen sponge carrier on bone healing in dogs[J]. Vet Comp Orthop Traumatol, 2016, 29(4): 306-313.
doi: 10.3415/VCOT-15-08-0137 pmid: 27432270 |
[81] | Yu ZL, Jiao BF, Li ZB. Lysophosphatidic acid analogue rather than lysophosphatidic acid promoted the bone formation in vivo[J]. Biomed Res Int, 2018, 2018: 7537630. |
[82] | Minami K, Ueda N, Maeda H, et al. Modulation of chemoresistance by lysophosphatidic acid (LPA) signaling through LPA5 in melanoma cells treated with anticancer drugs[J]. Biochem Biophys Res Commun, 2019, 517(2): 359-363. |
[83] |
Lei L, Su J, Chen JC, et al. The role of lysophosphatidic acid in the physiology and pathology of the skin[J]. Life Sci, 2019, 220: 194-200.
doi: S0024-3205(18)30833-6 pmid: 30584899 |
[84] | Kaffe E, Magkrioti C, Aidinis V. Deregulated lysophosphatidic acid metabolism and signaling in liver cancer[J]. Cancers, 2019, 11(11): 1626. |
[85] | Hussain Z, Iqbal J, Liu HC, et al. Exploring the role of lipoprotein(a) in cardiovascular diseases and diabetes in Chinese population[J]. Int J Biol Macromol, 2023, 233: 123586. |
[1] | 林祥祥, 余飞, 宋艺蔚, 王莞, 弓国梁, 林新平. 内收上颌切牙时唇腭侧牙槽骨改建影响因素的研究进展[J]. 口腔医学, 2023, 43(11): 1053-1056. |
[2] | 龚雪, 钱文昊, 苏俭生. 唑来膦酸对大鼠颌面骨和外周骨创伤后骨改建的影响[J]. 口腔医学, 2022, 42(7): 587-592. |
[3] | 冯梅婷, 罗礼君. β-抑制蛋白2调节炎症性疾病作用机制的研究进展[J]. 口腔医学, 2022, 42(6): 540-544. |
[4] | 李律元 夏伦果 李佳宜 谭宇 房兵. 低强度脉冲超声在正畸骨改建中的研究进展[J]. , 2021, 41(9): 851-855. |
[5] | 蔡昀 唐燚 康非吾. 下颌升支截骨去血供后牙槽骨内氧水平变化与骨改建的变化研究[J]. , 2020, 40(10): 869-873. |
[6] | 张瑞林 孙瑶. 正畸牙槽骨改建中RANKL/OPG表达动态变化特征及牙周组织细胞凋亡观察[J]. , 2019, 39(6): 488-493. |
[7] | 薛敏 郑海英 封伟 刘国惠. 不同平台转移距离对种植体周围骨改建的影响[J]. , 2018, 38(4): 329-332. |
[8] | 纪映辰 康非吾. 手术先行治疗牙颌面畸形的研究进展[J]. , 2017, 37(8): 742-745. |
[9] | 杨鑫铭 柯杰. 上下颌联合扩弓对牙槽骨改建影响因素的研究现状[J]. , 2017, 37(7): 660-663. |
[10] | 莫士诚 赵春洋 王 林. 应用功能矫治器下颌前伸髁状突改建的研究进展[J]. , 2014, 34(8): 627-630. |
[11] | 巫云霞;王林;张卫兵;马俊青;吴蓉宁;张文健. 扩张早期大鼠腭中缝细胞凋亡现象的观察[J]. , 2007, 27(4): 175-177. |
[12] | 郑茜聪;刘丽. 骨保护素及其配体在口腔领域的研究进展[J]. , 2007, 27(2): 104-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||