口腔医学 ›› 2025, Vol. 45 ›› Issue (6): 445-452.doi: 10.13591/j.cnki.kqyx.2025.06.009

• 基础与临床研究 • 上一篇    下一篇

基于深度学习方法建立颞下颌关节核磁共振影像的自动分割模型

刘飞1,2,3, 张久楼4(), 金若帆1,2,3, 张楠1,2,3, 周薇娜1,2,3()   

  1. 1 南京医科大学附属口腔医院颞颌关节与颌面疼痛科,江苏南京(210029)
    2 口腔疾病研究与防治国家级重点实验室培育建设点,江苏南京(210029)
    3 江苏省口腔转化医学工程研究中心,江苏南京(210029)
    4 南京医科大学第一附属医院放射科,江苏南京(210029)
  • 收稿日期:2024-12-29 出版日期:2025-06-28 发布日期:2025-07-08
  • 通讯作者: 周薇娜 E-mail: weina119@126.com; 张久楼 E-mail: jlcheung1988@njmu.edu.cn
  • 基金资助:
    江苏省自然科学基金(LKM2022026)

The automatic segmentation of the temporomandibular joint based on MRI using deep learning method

LIU Fei1,2,3, ZHANG Jiulou4(), JIN Ruofan1,2,3, ZHANG Nan1,2,3, ZHOU Weina1,2,3()   

  1. Department of TMD & Orofacial Pain, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2024-12-29 Online:2025-06-28 Published:2025-07-08

摘要:

目的 开发一种基于深度学习的自动分割模型,用于颞下颌关节(TMJ)核磁共振成像(MRI)的分割。方法 收集104例研究对象的颞下颌关节MRI数据,并对关节盘、髁突及关节窝进行标注。利用自适应U-Net框架(nnU-Net),构建分割模型,并对该模型进行定量和定性评估。结果 所建立的分割模型在分割准确性方面表现出色。在不同关节结构的分割上,关节盘的Dice相似系数(Dice)达0.77,髁突的Dice达0.85,关节窝的Dice达0.66。模型在处理开口和闭口状态下的MRI图像时,展现了相近的分割性能。结论 本研究开发了一种基于深度学习的颞下颌关节MRI自动分割模型,该模型有助于临床医生对颞下颌关节盘移位做出快速判断。

关键词: 颞下颌关节, 核磁共振, 深度学习, 自动分割

Abstract:

Objective To build an automatic segmentation model of temporomandibular joint(TMJ) based on magnetic resonance imaging(MRI) using deep learning method. Methods The MRI data of TMJ of 104 subjects were collected, with the articular disc, condyle and glenoid fossa marked. The adaptive U-Net framework(nnU-Net) was used to construct a segmentation model, which was subjected to both quantitative and qualitative assessments. Results The segmentation model demonstrated excellent accuracy in segmentation. In the segmentation of different joint structures, the model achieved Dice of 0.77 for the articular disc, 0.85 for the condyle, and 0.66 for the glenoid fossa. The model showed similar segmentation performance when processing MRI images in both open-mouth and closed-mouth states. Conclusion This study developed an automatic segmentation model for TMJ MRI based on deep learning, which can assist clinicians in diagnosing anterior displacement of the TMJ disc.

Key words: temporomandibular joint, magnetic resonance imaging, deep learning, automatic segmentation

中图分类号: