›› 2021, Vol. 41 ›› Issue (8): 732-736.
Previous Articles Next Articles
Received:
2020-11-17
Revised:
2021-02-05
Online:
2021-08-28
Published:
2021-08-28
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Karimi Z, Karimi L, Shokrollahi H. Nano-magnetic particles used in biomedicine: core and coating materials[J]. Mater Sci Eng C Mater Biol Appl,2013,33(5):2465-2475. |
[2] | Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications[J]. J Biomed Mater Res A,2016,104(5):1285-1296. |
[3] | Hou YH, Wang JJ, Jiang YZ, et al. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71[J].Biosens Bioelectron,2018,99:186-192. |
[4] | Yun HM, Lee ES, Kim MJ, et al. Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways[J].PLoS One,2015,10(9):e0138614. |
[5] | Bocanegra Gondan AI, Ruiz-de-Angulo A, Zabaleta A, et al. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles[J]. Biomaterials, 2018,170:95-115. |
[6] | Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications[J]. Methods Mol Biol, 2017, 1570: 47-71. |
[7] | Ma Y, Chen T, Iqbal MZ, et al. Applications of magnetic materials separation in biological nanomedicine[J]. Electrophoresis,2019,40(16-17):2011-2028. |
[8] | Chandrasekharan P, Tay ZW, Hensley D, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications[J]. Theranostics,2020,10(7):2965-2981. |
[9] | Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats[J].J Tissue Eng Regen Med,2018,12(4):e2085-e2098. |
[10] | Wang LQ, Lu XG, Wang JQ, et al. Facile synthesis of Fe@Fe2O3, nanochains exhibiting high heating efficiency in magnetic hyperthermia[J]. J Alloys Compd, 2016, 681(5): 50-56. |
[11] | Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J].Nat Nanotechnol,2007,2(9):577-583. |
[12] | Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)[J]. Chem Soc Rev,2019,48(4):1004-1076. |
[13] | Ajkidkarn P, Ritprajak P, Injumpa W, et al. Synthesis, characterization, drug release and transdentinal delivery studies of magnetic nanocubes coated with biodegradable poly(2-(dimethyl amino)ethyl methacrylate)[J].J Magn Magn Mater,2017,427:235-240. |
[14] | Wu K, Su D, Liu J,et al. Magnetic nanoparticles in nanomedicine: a review of recent advances[J]. Nanotechnology,2019,30(50):502003. |
[15] | Balavijayalakshmi J, Suriyanarayanan N, Jayaprakash R. Effects of sinteringon structural and magnetic properties of Cu substituted cobalt- nickel mixed ferrite nanoparticles[J]. J Magnet Magnet Mater,2014,362:135–140. |
[16] | Sun S, Zhong B, Li W, et al. Immunological methods for the diagnosis of oral mucosal diseases[J]. Br J Dermatol,2019,181(1):23-36. |
[17] | Jampasa S, Lae-Ngee P, Patarakul K, et al. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis[J]. Biosens Bioelectron,2019,142:111539. |
[18] | Sobczak-Kupiec A, Venkatesan J, Alhathal AlAnezi A, et al. Magnetic nanomaterials and sensors for biological detection[J]. Nanomedicine,2016,12(8):2459-2473. |
[19] | Krause CE, Otieno BA, Bishop GW, et al. Ultrasensitive microfluidic array for serum pro-inflammatory cytokines and C-reactive protein to assess oral mucositis risk in cancer patients[J].Anal Bioanal Chem,2015,407(23):7239-7243. |
[20] | Shanavas A, Sasidharan S, Bahadur D, et al. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging[J]. J Colloid Interface Sci,2017,486:112-120. |
[21] | Yang Y, Zhou B, Zhou J, et al. Assessment of lingual sentinel lymph nodes metastases using dual-modal indirect CT/MR lymphography with gold-gadolinium-based nanoprobes in a tongue VX2 carcinoma model[J]. Acta Otolaryngol,2018,138(8):727-733. |
[22] | Zhang Y, Yang H, Zhou Z, et al. Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors[J]. Bioconjug Chem,2017,28(4):869-879. |
[23] | Perez JM, Simeone FJ, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media[J]. J Am Chem Soc,2003,125(34):10192-10193. |
[24] | Meng J, Zhang Y, Qi X, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells[J].Nanoscale,2010,2(12):2565-2569. |
[25] | Yun HM, Ahn SJ, Park KR, et al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation[J].Biomaterials,2016,85:88-98. |
[26] | Xia Y, Guo Y, Yang Z, et al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/beta-catenin signaling[J].Mater Sci Eng C Mater Biol Appl,2019,104:109955. |
[27] | Xia Y, Chen H, Zhao Y, et al. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2019,98:30-41. |
[28] | Yun HM, Kang SK, Singh RK, et al. Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-κB pathways[J]. Dent Mater,2016,32(11):1301-1311. |
[29] | Koto W, Shinohara Y, Kitamura K, et al. Porcine Dental Epithelial Cells Differentiated in a Cell Sheet Constructed by Magnetic Nanotechnology[J].Nanomaterials(Basel),2017,7(10):322. |
[30] | Jegal SH, Park JH, Kim JH, et al. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration[J]. Acta Biomater,2011,7(4):1609-1617. |
[31] | Sasaki T, Iwasaki N, Kohno K, et al. Magnetic nanoparticles for improving cell invasion in tissue engineering[J]. J Biomed Mater Res A,2008,86(4):969-978. |
[32] | Cicha I, Lyer S, Janko C, et al. Magnetic nanoparticles for medical applications[J] .Nanomedicine (Lond), 2017, 12: 825-829. |
[33] | Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome[J]. Arch Microbiol,2018,200(4):525-540. |
[34] | 孟焕新.2018年牙周病和植体周病国际新分类简介 [J].中华口腔医学杂志,2019,54(2):73-78. Meng HX. 2018 world new classification of periodontal and peri-implant diseases and conditions[J]. Chinese Journal of Stomatology, 2019,54(2):73-78. |
[35] | Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease[J]. Oral Dis,2017,23(3):276-286. |
[36] | Rodrigues GR, Lopez-Abarrategui C, de la Serna Gomez I, et al. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases[J]. Int J Pharm,2019,555:356-367. |
[37] | Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat[J].ACS Nano,2012,6(3):2656-2664. |
[38] | Thukkaram M, Sitaram S, Kannaiyan SK, et al. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces[J].Int J Biomater,2014,2014:716080. |
[39] | Gao L, Liu Y, Kim D, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo[J].Biomaterials,2016,101:272-284. |
[40] | Horev B, Klein MI, Hwang G, et al. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence[J].ACS Nano,2015,9(3):2390-2404. |
[41] | Sun X, Wang L, Lynch CD, et al. Nanoparticles having amphiphilic silane containing Chlorin e6 with strong anti-biofilm activity against periodontitis-related pathogens[J]. J Dent,2019,81:70-84. |
[42] | Ji H, Dong K, Yan Z, et al. Bacterial Hyaluronidase Self-Triggered Prodrug Release for Chemo-Photothermal Synergistic Treatment of Bacterial Infection[J].Small,2016,12(45):6200-6206. |
[43] | Gao L, Giglio KM, Nelson JL, et al. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination[J].Nanoscale,2014,6(5):2588-2593. |
[44] | Hwang G, Paula AJ, Hunter EE, et al. Catalytic antimicrobial robots for biofilm eradication[J].Sci Robot,2019,4(29):eaaw2388. |
[45] | Ji Y, Choi SK, Sultan AS, et al. Nanomagnetic-mediated drug delivery for the treatment of dental disease[J].Nanomedicine,2018,14(3):919-927. |
[46] | Niemirowicz-Laskowska K, Mystkowska J, ?ysik D, et al. Antimicrobial and Physicochemical Properties of Artificial Saliva Formulations Supplemented with Core-Shell Magnetic Nanoparticles[J]. Int J Mol Sci,2020,21(6):1979. |
[47] | Luo D, Shahid S, Hasan SM, et al. Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field[J].Dent Mater,2018,34(5):764-775. |
[48] | Pappus SA, Mishra M. A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes[J]. Adv Exp Med Biol,2018,1048:311-322. |
[1] | Xiao-Ming SUN. Research progress of animal models of commonoral mucosal diseases [J]. , 2018, 38(4): 380-384. |
[2] | . A systematic review of aloe vera in the treatment of oral mucosal diseases [J]. , 2018, 38(12): 1122-1127. |
[3] | Yue WANG Ying JIN. Epidemiological survey and analysis on periodontal heath status of patients with oral mucosal diseases [J]. , 2016, 36(11): 1027-1031. |
[4] | . HPVassociated diseases of the oral mucosa [J]. , 2015, 35(12): 993-998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||