Stomatology ›› 2023, Vol. 43 ›› Issue (5): 476-480.doi: 10.13591/j.cnki.kqyx.2023.05.016
• Summary • Previous Articles
CHEN Jingjing1,LI Shuya1,LIU Tengda1,WANG Shuhong2()
Revised:
2022-12-05
Online:
2023-05-28
Published:
2023-05-31
Contact:
WANG Shuhong
E-mail:wangshh@126.com
CLC Number:
CHEN Jingjing,LI Shuya,LIU Tengda,WANG Shuhong. Application and research progress of supracrestal soft tissue around implants[J]. Stomatology, 2023, 43(5): 476-480.
[1] |
Berglundh T, Lindhe J, Ericsson I, et al. The soft tissue barrier at implants and teeth[J]. Clin Oral Implants Res, 1991, 2(2):81-90.
doi: 10.1034/j.1600-0501.1991.020206.x |
[2] |
Jepsen S, Caton JG, Albandar JM, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions:Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions[J]. J Periodontol, 2018, 89(Suppl 1):S237-S248.
doi: 10.1002/JPER.17-0733 |
[3] |
Avila-Ortiz G, Gonzalez-Martin O, Couso-Queiruga E, et al. The peri-implant phenotype[J]. J Periodontol, 2020, 91(3):283-288.
doi: 10.1002/JPER.19-0566 pmid: 32027021 |
[4] |
Sukekava F, Pannuti CM, Lima LA, et al. Dynamics of soft tissue healing at implants and teeth:A study in a dog model[J]. Clin Oral Implants Res, 2016, 27(5):545-552.
doi: 10.1111/clr.2016.27.issue-5 |
[5] | Berglundh T, Abrahamsson I, Welander M, et al. Morphogenesis of the peri-implant mucosa:An experimental study in dogs[J]. Clin Oral Implants Res, 2007, 18(1):1-8. |
[6] |
Tomasi C, Tessarolo F, Caola I, et al. Morphogenesis of peri-implant mucosa revisited:An experimental study in humans[J]. Clin Oral Implants Res, 2014, 25(9):997-1003.
doi: 10.1111/clr.2014.25.issue-9 |
[7] | Vignoletti F, de Sanctis M, Berglundh T, et al. Early healing of implants placed into fresh extraction sockets:an experimental study in the beagle dog. Ⅲ:Soft tissue findings[J]. J ClinPeriodontol, 2009, 36(12):1059-1066. |
[8] |
Ikeda H, Yamaza T, Yoshinari M, et al. Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla[J]. J Periodontol, 2000, 71(6):961-973.
doi: 10.1902/jop.2000.71.6.961 pmid: 10914800 |
[9] |
Nakamura M. Histological and immunological characteristics of the junctionalepithelium[J]. Jpn Dent Sci Rev, 2018, 54(2):59-65.
doi: 10.1016/j.jdsr.2017.11.004 |
[10] |
Rodríguez X, Navajas A, Vela X, et al. Arrangement of peri-implant connective tissue fibers around platform-switching implants with conical abutments and its relationship to the underlying bone:A human histologic study[J]. Int J Periodontics Restorative Dent, 2016, 36(4):533-540.
doi: 10.11607/prd.2580 pmid: 27333011 |
[11] | Moon IS, Berglundh T, Abrahamsson I, et al. The barrier between the keratinized mucosa and the dental implant. An experimental study in the dog[J]. J ClinPeriodontol, 1999, 26(10):658-663. |
[12] |
Zheng Z, Ao XG, Xie P, et al. The biological width around implant[J]. J Prosthodont Res, 2021, 65(1):11-18.
doi: 10.2186/jpr.JPOR_2019_356 |
[13] |
Negri B, López Marí M, Maté Sánchez de Val JE, et al. Biological width formation to immediate implants placed at different level in relation to the crestal bone:An experimental study in dogs[J]. Clin Oral Implants Res, 2015, 26(7):788-798.
doi: 10.1111/clr.2015.26.issue-7 |
[14] | 张楚南, 赵旭, 乔士冲, 等. 拔牙窝内植入不同深度骨水平种植体周围软硬组织改建的组织形态变化[J]. 中国口腔颌面外科杂志, 2021, 19(3):193-196. |
[15] |
Pontes AEF, Ribeiro FS, Iezzi G, et al. Biologic width changes around loaded implants inserted in different levels in relation to crestal bone:Histometric evaluation in canine mandible[J]. Clin Oral Implants Res, 2008, 19(5):483-490.
doi: 10.1111/j.1600-0501.2007.01506.x |
[16] | Valles C, Rodriguez-Ciurana X, Muñoz F, et al. Influence of implant neck surface and placement depth on crestal bone changes and soft tissue dimensions around platform-switched implants:A histologic study in dogs[J]. J ClinPeriodontol, 2018, 45(7):869-883. |
[17] |
Valles C, Rodríguez-Ciurana X, Clementini M, et al. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants:A systematic review and meta-analysis[J]. Clin Oral Investig, 2018, 22(2):555-570.
doi: 10.1007/s00784-017-2301-1 |
[18] | SavagetGonçalves Junior R, dos Santos PGF, et al. Effect of different implant placement depths on crestal bone levels and soft tissue behavior:A 5-year randomized clinical trial[J]. Clin Oral Implants Res, 2020, 31(3):282-293. |
[19] | Askar H, Wang IC, Tavelli L, et al. Effect of implant vertical position, design, and surgical characteristics on mucosal vertical dimension:A meta-analysis of animal studies[J]. Int J Oral Maxillofac Implants, 2020, 35(3):461-478. |
[20] |
Farronato D, Santoro G, Canullo L, et al. Establishment of the epithelial attachment and connective tissue adaptation to implants installed under the concept of “platform switching”:A histologic study in minipigs[J]. Clin Oral Implants Res, 2012, 23(1):90-94.
doi: 10.1111/clr.2011.23.issue-1 |
[21] |
Linkevicius T, Linkevicius R, Alkimavicius J, et al. Influence of titanium base, lithium disilicate restoration and vertical soft tissue thickness on bone stability around triangular-shaped implants:A prospective clinical trial[J]. Clin Oral Implants Res, 2018, 29(7):716-724.
doi: 10.1111/clr.13263 |
[22] |
Berglundh T, Lindhe J. Dimension of the periimplantmucosa[J]. J Clin Periodontol, 1996, 23(10):971-973.
doi: 10.1111/j.1600-051x.1996.tb00520.x pmid: 8915028 |
[23] |
Papapetros D, Karagiannis V, Konstantinidis A, et al. Interim tissue changes following connective tissue grafting and two-stage implant placement. A randomized clinical trial[J]. J Clin Periodontol, 2019, 46(9):958-968.
doi: 10.1111/jcpe.13159 pmid: 31206749 |
[24] |
Puisys A, Zukauskas S, Kubilius R, et al. Clinical and histologic evaluations of porcine-derived collagen matrix membrane used for vertical soft tissue augmentation:A case series[J]. Int J Periodontics Restorative Dent, 2019, 39(3):341-347.
doi: 10.11607/prd.4097 |
[25] |
Lu W, Qi G, Ding Z, et al. Clinical efficacy of acellular dermal matrix for plastic periodontal and implant surgery:A systematic review[J]. Int J Oral Maxillofac Surg, 2020, 49(8):1057-1066.
doi: 10.1016/j.ijom.2019.12.005 |
[26] | Verardi S, Orsini M, Lombardi T, et al. Comparison between two different techniques for peri-implant soft tissue augmentation:Porcine dermal matrix graft versus tenting screw[J]. J Periodontol, 2019:2019Dec19. |
[27] |
Zuiderveld EG, Meijer HJA, den Hartog L, et al. Effect of connective tissue grafting on peri-implant tissue in single immediate implant sites:A RCT[J]. J Clin Periodontol, 2018, 45(2):253-264.
doi: 10.1111/jcpe.12820 pmid: 28941303 |
[28] | 徐秀英, 文勇, 张冰, 等. 美学区种植义齿唇侧丰满度不佳的软组织解决方案[J]. 口腔医学, 2019, 39(4):343-345, 364. |
[29] |
Raes S, Eghbali A, Chappuis V, et al. A long-term prospective cohort study on immediately restored single tooth implants inserted in extraction sockets and healed ridges:CBCT analyses, soft tissue alterations, aesthetic ratings, and patient-reported outcomes[J]. Clin Implant Dent Relat Res, 2018, 20(4):522-530.
doi: 10.1111/cid.2018.20.issue-4 |
[30] |
Chan D, Pelekos G, Ho D, et al. The depth of the implant mucosal tunnel modifies the development and resolution of experimental peri-implant mucositis:A case-control study[J]. J Clin Periodontol, 2019, 46(2):248-255.
doi: 10.1111/jcpe.2019.46.issue-2 |
[31] |
Schwarz F, Derks J, Monje A, et al. Peri-implantitis[J]. J Periodontol, 2018, 89:S267-S290.
doi: 10.1002/JPER.16-0350 |
[32] | 赖颖真, 陈江, 林珊. 钛表面微沟槽形貌对人牙龈纤维细胞黏着斑蛋白表达的影响[J]. 上海口腔医学, 2015, 24(2):182-187. |
[33] |
Xu RG, Hu XC, Yu XL, et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells[J]. Int J Nanomedicine, 2018, 13:5045-5057.
doi: 10.2147/IJN |
[34] |
Zhang L, Guo JQ, Huang XY, et al. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants[J]. J Mater Chem B, 2016, 4(21):3788-3800.
doi: 10.1039/c6tb00563b pmid: 32263317 |
[35] | 王非凡, 刘洪臣. 钛种植体表面五氧化二钽涂层的制备及其促成骨研究进展[J]. 中华老年口腔医学杂志, 2021, 19(4):237-240. |
[36] |
Jin JF, Fei DD, Zhang YM, et al. Functionalized titanium implant in regulating bacteria and cell response[J]. Int J Nanomedicine, 2019, 14:1433-1450.
doi: 10.2147/IJN |
[37] |
Zhu Y, Zhang CN, Gu YX, et al. The responses of human gingival fibroblasts to magnesium-doped titanium[J]. J Biomed Mater Res A, 2020, 108(2):267-278.
doi: 10.1002/jbm.a.36813 pmid: 31606920 |
[38] | 刘利鹏, 安维康, 郑亚飞, 等. 钛表面PDLLA-LN5复合涂层的构建及对角质形成细胞生物学行为的影响[J]. 实用口腔医学杂志, 2022, 38(2):168-173. |
[39] |
Zhang J, Wang HM, Wang Y, et al. Substrate-mediated gene transduction of LAMA3 for promoting biological sealing between titanium surface and gingival epithelium[J]. Colloids Surf B Biointerfaces, 2018, 161:314-323.
doi: 10.1016/j.colsurfb.2017.10.030 |
[40] |
Yang MG, Jiang PP, Ge Y, et al. Dopamine self-polymerized along with hydroxyapatite onto the preactivated titanium percutaneous implants surface to promote human gingival fibroblast behavior and antimicrobial activity for biological sealing[J]. J Biomater Appl, 2018, 32(8):1071-1082.
doi: 10.1177/0885328217749963 pmid: 29301451 |
[41] |
Wang F, Hou K, Chen WJ, et al. Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenicdifferentiation[J]. Biomater Sci, 2020, 8(2):657-672.
doi: 10.1039/C9BM01478K |
[42] |
Bienz SP, Hilbe M, Hüsler J, et al. Clinical and histological comparison of the soft tissue morphology between zirconia and titanium dental implants under healthy and experimental mucositis conditions-A randomized controlled clinical trial[J]. J Clin Periodontol, 2021, 48(5):721-733.
doi: 10.1111/jcpe.v48.5 |
[43] | da Cruz MB, Marques JF, Peñarrieta-Juanito GM, et al. Hard and soft tissue cell behavior on polyetheretherketone, zirconia, and titanium implant materials[J]. Int J Oral Maxillofac Implants, 2019, 34(1):39-46. |
[1] | . The classification and research progress of surface treatment of dental implant against bacteria [J]. , 2020, 40(3): 258-261. |
[2] | . Cell sheet technology and its application in surface modifications of implants [J]. , 2018, 38(2): 172-176. |
[3] | . Effect of cervical design of dental implant on periimplantitis [J]. , 2018, 38(2): 177-180. |
[4] | . Effect of alkali-and-heat treatment combined with ultraviolet irradiation on bioactivity of titanium in vitro [J]. , 2017, 37(5): 408-412. |
[5] | Zhi Li. Research progress on the application of nano-sized dioxide titanium in biomedicine field [J]. , 2017, 37(1): 85-88. |
[6] | . Stress distribution of platform switching implant with different mismatch sizes on implant system and marginal bone tissue [J]. , 2016, 36(11): 984-988. |
[7] | cui linlin. Overview of implant surface treatment research [J]. , 2015, 35(2): 150-152. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 913
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||