›› 2021, Vol. 41 ›› Issue (8): 737-741.
Previous Articles Next Articles
Received:
2021-03-11
Revised:
2021-04-09
Online:
2021-08-28
Published:
2021-08-28
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Chaudhari AA, Vig K, Baganizi DR, et al.Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review[J].Int J Mol Sci, 2016, 17(12):1974- |
[2] | Lu G, Ding Z, Wei Y, et al.Anisotropic Biomimetic Silk Scaffolds for Improved Cell Migration and Healing of Skin Wounds[J].ACS Appl Mater Interfaces, 2018, 10(51):44314-44323 |
[3] | Melke J, Midha S, Ghosh S, et al.Silk fibroin as biomaterial for bone tissue engineering.[J].Acta Biomater, 2016, 31:1-16 |
[4] | Vepari C, Kaplan DL.Silk as a biomaterial[J].Prog Polym Sci, 2007, 32(8-9):991-1007 |
[5] | Volkov V, Ferreira AV, Cavaco-Paulo A.On the routines of wild-type silk fibroin processing toward silk-inspired materials: a review[J].Macromol Mater Eng, 2015, 300(12):1199-1216 |
[6] | Huemmerich D, Slotta U, Scheibel T.Processing and modification of films made from recombinant spider silk proteins[J].Applied Physics A, 2006, 82(2):219-222 |
[7] | Jao D, Mou XY, Hu X.Tissue regeneration: a silk road[J].J Funct Biomater, 2016, 7(3):22- |
[8] | Park YR, Sultan MT, Park HJ, et al.NF-κB signaling is key in the wound healing processes of silk fibroin.[J].Acta Biomater, 2018, 67:183-195 |
[9] | Sultan MT, Lee OJ, Kim SH, et al.Silk fibroin in wound healing process.[J].Adv Exp Med Biol, 2018, 1077:115-126 |
[10] | Roh DH, Kang SY, Kim JY, et al.Wound healing effect of silk fibroinalginate-blended sponge in full thickness skin defect of rat[J].J Mater Sci Mater Med, 2006, 17(6):547-552 |
[11] | Huang WW, Ling SJ, Li CM, et al.Silkworm silk-based materials and devices generated using bio-nanotechnology[J].Chem Soc Rev, 2018, 47(17):6486-6504 |
[12] | Lu QA, Zhang B, Li MZ, et al.Degradation mechanism and control of silk fibroin[J].Biomacromolecules, 2011, 12(4):1080-1086 |
[13] | Qing YA, Cheng L, Li RY, et al.Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies.[J].Int J Nanomedicine, 2018, 13:3311-3327 |
[14] | Schnaider L, Toprakcioglu Z, Ezra A, et al.Biocompatible hybrid organicinorganic microhydrogels promote bacterial adherence and eradication in vitro and in vivo[J].Nano Lett, 2020, 20(3):1590-1597 |
[15] | Zhang YH, Shi MJ, Li KL, et al.Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties[J].J Biomater Sci Polym Ed, 2020, 31(3):376-393 |
[16] | Liao CZ, Li YC, Tjong SC.Bactericidal and cytotoxic properties of silver nanoparticles[J].Int J Mol Sci, 2019, 20(2):449- |
[17] | Zhang T, Wang L, Chen Q, et al.Cytotoxic potential of silver nanoparticles[J].Yonsei Med J, 2014, 55(2):283-291 |
[18] | Qian Z, Bai Y, Zhou J, et al.A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds[J].J Mater Chem B, 2020, 8(32):7197-7212 |
[19] | Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, et al.Hyaluronic acid (HA)-based silk fibroinzinc oxide core-shell electrospun dressing for burn wound management[J].Macromol Biosci, 2020, 20(4):e1900328- |
[20] | Mehrabani MG, Karimian R, Rakhshaei R, et al.Chitin/silk fibroin/TiO2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity.[J].Int J Biol Macromol, 2018, 116:966-976 |
[21] | Muxika A, Etxabide A, Uranga J, et al.Chitosan as a bioactive polymer: processing, properties and applications.[J].Int J Biol Macromol, 2017, 105:1358-1368 |
[22] | Adali T, Kalkan R, Karimizarandi L.The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels.[J].Int J Biol Macromol, 2019, 124:541-547 |
[23] | Cai ZX, Mo XM, Zhang KH, et al.Fabrication of chitosansilk fibroin composite nanofibers for wound-dressing applications[J].Int J Mol Sci, 2010, 11(9):3529-3539 |
[24] | Xia LB, Long YM, Li D, et al.LBL deposition of chitosan and silk fibroin on nanofibers for improving physical and biological performance of patches.[J].Int J Biol Macromol, 2019, 130:348-356 |
[25] | Verlee A, Mincke S, Stevens CV.Recent developments in antibacterial and antifungal chitosan and its derivatives.[J].Carbohyd Polym, 2017, 164:268-283 |
[26] | Gokila S, Gomathi T, Vijayalakshmi K, et al.Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications.[J].Int J Biol Macromol, 2018, 120:876-885 |
[27] | Hao XY, Wang X, Yang WM, et al.Comparisons of the restoring and reinforcement effects of carboxymethyl chitosan-silk fibroin (Bombyx Mori/Antheraea Yamamai/Tussah) on aged historic silk.[J].Int J Biol Macromol, 2019, 124:71-79 |
[28] | Felgueiras HP, Amorim MTP.Functionalization of electrospun polymeric wound dressings with antimicrobial peptides.[J].Colloids Surf B Biointerfaces, 2017, 156:133-148 |
[29] | Zhang DD, Fan LP, Ma LL, et al.Helicobacter pylori ribosomal protein-A2 peptidesilk fibroin nanofibrous composites as potential wound dressing[J].J Biomed Nanotechnol, 2019, 15(3):507-517 |
[30] | Li Z, Jiang Y, Cao GL, et al.Construction of transgenic silkworm spinning antibacterial silk with fluorescence[J].Mol Biol Rep, 2015, 42(1):19-25 |
[31] | Meng DM, Li WJ, Shi LY, et al.Expression, purification and characterization of a recombinant antimicrobial peptide Hispidalin in Pichia pastoris.[J].Protein Expr Purif, 2019, 160:19-27 |
[32] | Wu T, Jiang Q, Wu D, et al.What is new in lysozyme research and its application in food industry? A review.[J].Food Chem, 2019, 274:698-709 |
[33] | Yuan M, Dai F, Li D, et al.Lysozyme/collagen multilayers layer-by-layer deposited nanofibers with enhanced biocompatibility and antibacterial activity.[J].Mater Sci Eng C Mater Biol Appl, 2020, 112:110868- |
[34] | Calamak S, Erdogdu C, Ozalp M, et al.Silk fibroin based antibacterial bionanotextiles as wound dressing materials.[J].Mater Sci Eng C Mater Biol Appl, 2014, 43:11-20, 2014, 43:11-20 |
[35] | Liu M, Li J, Li BX.Mannose-modificated polyethylenimine: a specific and effective antibacterial agent against escherichia coli[J].Langmuir, 2018, 34(4):1574-1580 |
[36] | Gilbert P, Moore LE.Cationic antiseptics: diversity of action under a common epithet[J].J Appl Microbiol, 2005, 99(4):703-715 |
[37] | Liang A, Zhang M, Luo H, et al.Porous poly(hexamethylene biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function[J].Materials, 2020, 13(2):285- |
[38] | Lemos CN, Cubayachi C, Dias K, et al.Iontophoresis-stimulated silk fibroin films as a peptide delivery system for wound healing.[J].Eur J Pharm Biopharm, 2018, 128:147-155 |
[39] | Tullii G, Donini S, Bossio C, et al.Micro- and nanopatterned silk substrates for antifouling applications[J].ACS Appl Mater Interfaces, 2020, 12(5):5437-5446 |
[40] | Hu WK, Wang ZJ, Zha Y, et al.High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration.[J].Adv Healthc Mater, 2020, e2000035:- |
[41] | Han L, Li PF, Tang PF, et al.Mussel-inspired cryogels for promoting wound regeneration through photobiostimulation,modulating inflammatory responses and suppressing bacterial invasion[J].Nanoscale, 2019, 11(34):15846-15861 |
[1] | . Performance comparison of three-dimensional printed silk fibroin/polyvinyl alcohol/nano-hydroxyapatite scaffold and polyvinyl alcohol/nano-hydroxyapatite scaffold [J]. , 2018, 38(7): 592-596. |
[2] | . Performance comparison of the antler powder composite scaffolds and nanohydroxyapatite composite scaffolds [J]. , 2017, 37(9): 791-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||