›› 2021, Vol. 41 ›› Issue (2): 170-176.
• Summary • Previous Articles Next Articles
Received:
2020-03-30
Revised:
2020-06-14
Online:
2021-02-28
Published:
2021-03-03
Contact:
Guo LiYang
E-mail:7308037@zju.edu.cn
Supported by:
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Le Guehennec L, Soueidan A, Layrolle P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J].Dent Mater, 2007, 23(7):844-54 |
[2] | Ruger M, Gensior T J, Herren C, et al.The removal of Al2O3 particles from grit-blasted titanium implant surfaces: effects on biocompatibility,osseointegration and interface strength in vivo[J].Acta Biomater, 2010, 6(7):2852-61 |
[3] | Yoo D, Marin C, Freitas G, et al.Surface characterization and in vivo evaluation of dual Acid-etched and grit-blastedacid-etched implants in sheep[J].Implant Dent, 2015, 24(3):256-62 |
[4] | Sima F, Davidson P M, Dentzer J, et al.Inorganic-organic thin implant coatings deposited by lasers[J].ACS Appl Mater Interfaces, 2015, 7(1):911-20 |
[5] | Qu Z, Rausch-Fan X, Wieland M, et al.The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification[J].J Biomed Mater Res A, 2007, 82(3):658-68 |
[6] | Ito Y, Hasuda H, Sakuragi M, et al.Surface modification of plastic,glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling[J].Acta Biomater, 2007, 3(6):1024-32 |
[7] | Zhou R, Wei D, Cheng S, et al.Structure,MC3T3-E1 cell response,and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure[J].ACS Appl Mater Interfaces, 2014, 6(7):4797-811 |
[8] | Shifang Z, Jue S, Fuming H, et al.Design and in vitro evaluation of simvastatin-hydroxyapatite coatings by an electrochemical process on titanium surfaces[J].J Biomed Nanotechnol, 2014, 10(7):1313-9 |
[9] | Iijima M, Tsukada M, Kamiya H.Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone[J].J Colloid Interface Sci, 2007, 307(2):418-24 |
[10] | Dumbleton J, Manley M T.Hydroxyapatite-coated prostheses in total hip and knee arthroplasty[J].J Bone Joint Surg Am, 2004, 86-A(11):2526-40 |
[11] | Sun L, Berndt C C, Gross K A, et al.Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review[J].J Biomed Mater Res, 2001, 58(5):570-92 |
[12] | Warren C J, Rose D J, Haushalter R C, et al.A New Transition Metal-Main Group Oxide Cluster in the Oxovanadium-Borate System: Hydrothermal Synthesis and Structure of (H(3)O)(12)[(VO)(12){B(16)O(32)(OH)(4)}(2)]28H(2)O[J].Inorg Chem, 1998, 37(6):1140-1141 |
[13] | Lai W, Chen C, Ren X, et al.Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system[J]. Mater Sci Eng C Mater Biol Appl, 2016, 62: 166-72. |
[14] | Chen Y, Chen X Y, Shen J W, et al.The Characterization and Osteogenic Activity of Nanostructured Strontium-Containing Oxide Layers on Titanium Surfaces[J].Int J Oral Maxillofac Implants, 2016, 31(4):e102-15 |
[15] | Zhou J, Zhao L.Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities[J]. Acta Biomater, 2016, 43: 358-368. |
[16] | Park J Y, Davies J E.Red blood cell and platelet interactions with titanium implant surfaces[J].Clin Oral Implants Res, 2000, 11(6):530-9 |
[17] | Yao Z Q, Ivanisenko Y, Diemant T, et al.Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation[J].Acta Biomater, 2010, 6(7):2816-25 |
[18] | Huang L Y, Xu K W, Lu J.A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings[J].J Mater Sci Mater Med, 2000, 11(11):667-73 |
[19] | Deplaine H, Lebourg M, Ripalda P, et al.Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds[J].J Biomed Mater Res B Appl Biomater, 2013, 101(1):173-86 |
[20] | Nordenstrom J, Elvius M, Bagedahl-Strindlund M, et al.Biochemical hyperparathyroidism and bone mineral status in patients treated long-term with lithium[J].Metabolism, 1994, 43(12):1563-7 |
[21] | Hedgepeth C M, Conrad L J, Zhang J, et al.Activation of the Wnt signaling pathway: a molecular mechanism for lithium action[J].Dev Biol, 1997, 185(1):82-91 |
[22] | Chalecka-Franaszek E, Chuang D M.Lithium activates the serinethreonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons[J].Proc Natl Acad Sci U S A, 1999, 96(15):8745-50 |
[23] | Baron R, Kneissel M.WNT signaling in bone homeostasis and disease: from human mutations to treatments[J].Nat Med, 2013, 19(2):179-92 |
[24] | Chen Y, Whetstone H C, Lin A C, et al.Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing[J].PLoS Med, 2007, 4(7):e249- |
[25] | Asagiri M, Takayanagi H.The molecular understanding of osteoclast differentiation[J].Bone, 2007, 40(2):251-64 |
[26] | Xu S, Zhang Y, Liu B, et al.Activation of mTORC1 in B Lymphocytes Promotes Osteoclast Formation via Regulation of beta-Catenin and RANKLOPG[J].J Bone Miner Res, 2016, 31(7):1320-33 |
[27] | Kramer I, Halleux C, Keller H, et al.Osteocyte Wntbeta-catenin signaling is required for normal bone homeostasis[J].Mol Cell Biol, 2010, 30(12):3071-85 |
[28] | Lacey D L, Timms E, Tan H L, et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J].Cell, 1998, 93(2):165-76 |
[29] | Fielding G A, Roy M, Bandyopadhyay A, et al.Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings[J].Acta Biomater, 2012, 8(8):3144-52 |
[30] | Hadley K B, Newman S M, Hunt J R.Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation,matrix maturation,and mineralization in the long bones of growing rats[J].J Nutr Biochem, 2010, 21(4):297-303 |
[31] | Khadeer M A, Sahu S N, Bai G, et al.Expression of the zinc transporter ZIP1 in osteoclasts[J].Bone, 2005, 37(3):296-304 |
[32] | Yamada Y, Ito A, Kojima H, et al.Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts[J].J Biomed Mater Res A, 2008, 84(2):344-52 |
[33] | Hie M, Tsukamoto I.Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone[J].Eur J Pharmacol, 2011, 668(1-2):140-6 |
[34] | Varanasi V G, Saiz E, Loomer P M, et al.Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions[J].Acta Biomater, 2009, 5(9):3536-47 |
[35] | Quinlan E, Partap S, Azevedo M M, et al.Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair[J]. Biomaterials, 2015, 52: 358-66. |
[36] | Wu C, Zhou Y, Fan W, et al.Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering[J].Biomaterials, 2012, 33(7):2076-85 |
[37] | Pacary E, Legros H, Valable S, et al.Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells[J].J Cell Sci, 2006, 119(Pt 13):2667-78 |
[38] | Ignjatovic N, Ajdukovic Z, Savic V, et al.Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones[J].J Mater Sci Mater Med, 2013, 24(2):343-54 |
[39] | Patntirapong S, Habibovic P, Hauschka P V.Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation[J].Biomaterials, 2009, 30(4):548-55 |
[40] | Cowan J A.Structural and catalytic chemistry of magnesium-dependent enzymes[J].Biometals, 2002, 15(3):225-35 |
[41] | Mayer I, Schlam R, Featherstone J D.Magnesium-containing carbonate apatites[J].J Inorg Biochem, 1997, 66(1):1-6 |
[42] | Rude R K, Gruber H E, Norton H J, et al.Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat[J].Bone, 2005, 37(2):211-9 |
[43] | Lu J, Wei J, Yan Y, et al.Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration[J].J Mater Sci Mater Med, 2011, 22(3):607-15 |
[44] | Landi E, Logroscino G, Proietti L, et al.Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour[J].J Mater Sci Mater Med, 2008, 19(1):239-47 |
[45] | Ziche M, Morbidelli L.Nitric oxide and angiogenesis[J].J Neurooncol, 2000, 50(1-2):139-48 |
[46] | Maier J A, Bernardini D, Rayssiguier Y, et al.High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro[J].Biochim Biophys Acta, 2004, 1689(1):6-12 |
[47] | Zou L, Lai H, Zhou Q, et al.Lasting controversy on ranibizumab and bevacizumab[J]. Theranostics, 2011, 1: 395-402. |
[48] | Dahl S G, Allain P, Marie P J, et al.Incorporation and distribution of strontium in bone[J].Bone, 2001, 28(4):446-53 |
[49] | Qiu K, Zhao X J, Wan C X, et al.Effect of strontium ions on the growth of ROS1728 cells on porous calcium polyphosphate scaffolds[J].Biomaterials, 2006, 27(8):1277-86 |
[50] | Coulombe J, Faure H, Robin B, et al.In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor[J].Biochem Biophys Res Commun, 2004, 323(4):1184-90 |
[51] | Tat S K, Pelletier J P, Mineau F, et al.Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts[J].Bone, 2011, 49(3):559-67 |
[52] | Saidak Z, Marie P J.Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis[J].Pharmacol Ther, 2012, 136(2):216-26 |
[53] | Hashizume M, Yamaguchi M.Stimulatory effect of beta-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells[J].Mol Cell Biochem, 1993, 122(1):59-64 |
[54] | Nielsen F H.Micronutrients in parenteral nutrition: boron,silicon,and fluoride[J].Gastroenterology, 2009, 137(5 Suppl):S55-60 |
[55] | Jugdaohsingh R, Calomme M R, Robinson K, et al.Increased longitudinal growth in rats on a silicon-depleted diet[J].Bone, 2008, 43(3):596-606 |
[56] | Hing K A, Revell P A, Smith N, et al.Effect of silicon level on rate,quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds[J].Biomaterials, 2006, 27(29):5014-26 |
[57] | Reffitt D M, Ogston N, Jugdaohsingh R, et al.Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J].Bone, 2003, 32(2):127-35 |
[58] | Jones J R, Tsigkou O, Coates E E, et al.Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells[J].Biomaterials, 2007, 28(9):1653-63 |
[59] | Pietak A M, Reid J W, Stott M J, et al.Silicon substitution in the calcium phosphate bioceramics[J].Biomaterials, 2007, 28(28):4023-32 |
[60] | Li H, Chang J.Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J].Acta Biomater, 2013, 9(6):6981-91 |
[61] | Zhaojun W, Lin W, Zhenyong W, et al.Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks[J].J Bone Miner Metab, 2013, 31(3):285-92 |
[62] | Lewiecki E M, Miller P D.Skeletal effects of primary hyperparathyroidism: bone mineral density and fracture risk[J].J Clin Densitom, 2013, 16(1):28-32 |
[63] | Filaire E, Toumi H.Reactive oxygen species and exercise on bone metabolism: friend or enemy?[J].Joint Bone Spine, 2012, 79(4):341-6 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||