口腔医学 ›› 2024, Vol. 44 ›› Issue (9): 705-709.doi: 10.13591/j.cnki.kqyx.2024.09.011
收稿日期:
2023-10-23
出版日期:
2024-09-28
发布日期:
2024-09-10
通讯作者:
朱慧勇 E-mail:zhuhuiyong@zju.edu.cn
基金资助:
WANG Pan1,2,LYU Jiong1,ZHU Huiyong1()
Received:
2023-10-23
Online:
2024-09-28
Published:
2024-09-10
摘要:
脂代谢重编程对头颈鳞癌发生发展、转移、耐药性形成至关重要。多种脂代谢关键酶在头颈鳞癌中表达上调,与癌症放化疗抵抗、预后不良密切相关。该文主要阐述头颈鳞癌中脂代谢的改变,从脂肪酸从头合成、脂肪酸氧化、甘油磷脂代谢以及甲羟戊酸与胆固醇合成途径四方面着手,探究脂代谢相关酶在头颈鳞癌中的表达异常及临床相关性、其对头颈鳞癌治疗耐药的影响及可能机制、已有的及潜在的靶向治疗策略。调整膳食结构辅助、多靶点联合用药、多种治疗方法联用可能是未来调控脂代谢、减少耐药、提高抗癌疗效的可行性策略。
中图分类号:
王盼, 吕炯, 朱慧勇. 靶向脂代谢逆转头颈鳞癌治疗耐药性的研究进展[J]. 口腔医学, 2024, 44(9): 705-709.
WANG Pan, LYU Jiong, ZHU Huiyong. Research progress of reversing treatment resistance in head and neck squamous cell carcinoma by targeting lipid metabolism[J]. Stomatology, 2024, 44(9): 705-709.
[1] | Fasano M, D’Onofrio I, Belfiore MP, et al. Head and neck squamous cell carcinoma in elderly patients: Role of radiotherapy and chemotherapy[J]. Cancers, 2022, 14(3): 472. |
[2] | Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48. |
[3] | Yuan ZC, Huang JT, Teh BM, et al. Exploration of a predictive model based on genes associated with fatty acid metabolism and clinical treatment for head and neck squamous cell carcinoma[J]. J Clin Lab Anal, 2022, 36(11): e24722. |
[4] | Li LY, Yang Q, Jiang YY, et al. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer[J]. Nat Commun, 2021, 12(1): 4362. |
[5] | Tan M, Lin XY, Chen HY, et al. Sterol regulatory element binding transcription factor 1 promotes proliferation and migration in head and neck squamous cell carcinoma[J]. Peer J, 2023, 11: e15203. |
[6] | Li K, Zhang CC, Chen L, et al. The role of acetyl-coA carboxylase2 in head and neck squamous cell carcinoma[J]. Peer J, 2019, 7: e7037. |
[7] | Göttgens EL, van den Heuvel CN, de Jong MC, et al. ACLY (ATP citrate lyase) mediates radioresistance in head and neck squamous cell carcinomas and is a novel predictive radiotherapy biomarker[J]. Cancers, 2019, 11(12): 1971. |
[8] | Kao YC, Lee SW, Lin LC, et al. Fatty acid synthase overexpression confers an independent prognosticator and associates with radiation resistance in nasopharyngeal carcinoma[J]. Tumour Biol, 2013, 34(2): 759-768. |
[9] | Aquino IG, Bastos DC, Cuadra-Zelaya FJM, et al. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines[J]. Arch Oral Biol, 2020, 113: 104707. |
[10] | Chen JY, Zhang F, Ren XS, et al. Targeting fatty acid synthase sensitizes human nasopharyngeal carcinoma cells to radiation via downregulating frizzled class receptor 10[J]. Cancer Biol Med, 2020, 17(3): 740-752. |
[11] |
Agostini M, Almeida LY, Bastos DC, et al. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas[J]. Mol Cancer Ther, 2014, 13(3): 585-595.
doi: 10.1158/1535-7163.MCT-12-1136 pmid: 24362464 |
[12] | Almeida LY, Moreira FDS, Santos GASD, et al. FASN inhibition sensitizes metastatic OSCC cells to cisplatin and paclitaxel by downregulating cyclin B1[J]. Oral Dis, 2023, 29(2): 649-660. |
[13] |
Jain P, Nattakom M, Holowka D, et al. Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity[J]. Stem Cells, 2018, 36(10): 1603-1616.
doi: 10.1002/stem.2868 pmid: 29938858 |
[14] |
Nanjappa V, Renuse S, Sathe GJ, et al. Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes[J]. Cancer Biol Ther, 2015, 16(11): 1593-1603.
doi: 10.1080/15384047.2015.1078022 pmid: 26391970 |
[15] | Min JY, Kim DH. Stearoyl-CoA desaturase 1 as a therapeutic biomarker: Focusing on cancer stem cells[J]. Int J Mol Sci, 2023, 24(10): 8951. |
[16] | Schminke B, Shomroni O, Salinas G, et al. Prognostic factor identification by screening changes in differentially expressed genes in oral squamous cell carcinoma[J]. Oral Dis, 2023, 29(1): 116-127. |
[17] | Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA desaturase 1 as a therapeutic target for thetreatment of cancer[J]. Cancers, 2019, 11(7): 948. |
[18] | Luo M, Liu YQ, Zhang H, et al. Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells[J]. Lab Invest, 2022, 102(7): 722-730. |
[19] | Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046. |
[20] |
Chen YX, Zhou YY, Han FW, et al. A novel miR-1291-ERRα-CPT1C axis modulates tumor cell proliferation, metabolism and tumorigenesis[J]. Theranostics, 2020, 10(16): 7193-7210.
doi: 10.7150/thno.44877 pmid: 32641987 |
[21] | Du QQ, Tan ZQ, Shi F, et al. PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation[J]. Cancer Sci, 2019, 110(6): 2050-2062. |
[22] | Moody L, Xu GB, Chen H, et al. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 141-152. |
[23] |
Tan ZQ, Xiao LB, Tang M, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy[J]. Theranostics, 2018, 8(9): 2329-2347.
doi: 10.7150/thno.21451 pmid: 29721083 |
[24] | Holubarsch CJF, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: The ERGO (etomoxir for the recovery of glucose oxidation) study[J]. Clin Sci, 2007, 113(4): 205-212. |
[25] |
Fujiwara N, Nakagawa H, Enooku K, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity[J]. Gut, 2018, 67(8): 1493-1504.
doi: 10.1136/gutjnl-2017-315193 pmid: 29437870 |
[26] |
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease[J]. Int Rev Cell Mol Biol, 2016, 321: 29-88.
doi: 10.1016/bs.ircmb.2015.10.001 pmid: 26811286 |
[27] | Uchiyama Y, Hayasaka T, Masaki N, et al. Imaging mass spectrometry distinguished the cancer and stromal regions of oral squamous cell carcinoma by visualizing phosphatidylcholine (16: 0/16: 1) and phosphatidylcholine (18: 1/20: 4)[J]. Anal Bioanal Chem, 2014, 406(5): 1307-1316. |
[28] | Yang XH, Song XW, Yang XD, et al. Big cohort metabolomic profiling of serum for oral squamous cell carcinoma screening and diagnosis[J]. Natural Sciences, 2022, 2(1): e20210071. |
[29] | Wang YH, Zhang XX, Wang S, et al. Identification of metabolism-associated biomarkers for early and precise diagnosis of oral squamous cell carcinoma[J]. Biomolecules, 2022, 12(3): 400. |
[30] | Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127. |
[31] | Liu F, Wu Y, Liu J, et al. A miR-205-LPCAT1 axis contributes to proliferation and progression in multiple cancers[J]. Biochem Biophys Res Commun, 2020, 527(2): 474-480. |
[32] | Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, et al. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor[J]. PLoS One, 2015, 10(3): e0120143. |
[33] | Zhang HY, Zheng YQ. LPCAT1 is transcriptionally regulated by FOXA1 to promote breast cancer progression and paclitaxel resistance[J]. Oncol Lett, 2023, 25(4): 134. |
[34] | Tao MY, Luo J, Gu T, et al. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma[J]. Cell Death Dis, 2021, 12(9): 845. |
[35] |
Xue LY, Qi HY, Zhang H, et al. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy[J]. Front Oncol, 2020, 10: 1510.
doi: 10.3389/fonc.2020.01510 pmid: 32974183 |
[36] | Tilija Pun N, Jeong CH. Statin as a potential chemotherapeutic agent: Current updates as a monotherapy, combination therapy, and treatment for anti-cancer drug resistance[J]. Pharmaceuticals, 2021, 14(5): 470. |
[37] | Kansal V, Burnham AJ, Kinney BLC, et al. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models[J]. J Immunother Cancer, 2023, 11(1): e005940. |
[38] | Fernandez KA, Allen P, Campbell M, et al. Atorvastatin is associated with reduced cisplatin-induced hearing loss[J]. J Clin Invest, 2021, 131(1): e142616. |
[39] |
Ricco N, Flor A, Wolfgeher D, et al. Mevalonate pathway activity as a determinant of radiation sensitivity in head and neck cancer[J]. Mol Oncol, 2019, 13(9): 1927-1943.
doi: 10.1002/1878-0261.12535 pmid: 31225926 |
[40] | Zhao XY, Guo B, Sun WJ, et al. Targeting squalene epoxidase confers metabolic vulnerability and overcomes chemoresistance in HNSCC[J]. Adv Sci, 2023, 10(27): e2206878. |
[41] |
Liu Y, Fang LJ, Liu WX. High SQLE expression and gene amplification correlates with poor prognosis in head and neck squamous cell carcinoma[J]. Cancer Manag Res, 2021, 13: 4709-4723.
doi: 10.2147/CMAR.S305719 pmid: 34163246 |
[1] | 卢志远, 许益敏, 周梦缘, 卢杨, 魏志豪, 肖灿. 口腔微生物影响放射性口炎:一项单臂前瞻性研究[J]. 口腔医学, 2024, 44(8): 596-601. |
[2] | 熊轲, 张昊, 胡图强. 大黄素通过调节自噬抑制口腔鳞状细胞癌细胞的增殖[J]. 口腔医学, 2024, 44(8): 602-608. |
[3] | 李晨曦, 龚忠诚, 赵化荣, 刘英. 周全性老年评估在老年头颈癌患者中的应用[J]. 口腔医学, 2024, 44(8): 630-634. |
[4] | 何垚, 赵振远, 高腾, 林鹏, 陈以任, 宋晓萌. 敲低Sec31A对头颈鳞状细胞癌恶性表型的影响[J]. 口腔医学, 2024, 44(7): 487-493. |
[5] | 伊婕, 丁宇洁, 单雨菲, 顾佳麒, 孙志达. 中性粒细胞胞外诱捕网调控口腔鳞状细胞癌的发展及预后的相关研究[J]. 口腔医学, 2024, 44(7): 500-517. |
[6] | 陈以任, 赵振远, 郑阳玉, 张玮, 宋晓萌. FBXW7通过抑制c-Myc/SOX2/SLC7A11促进头颈鳞癌细胞铁死亡[J]. 口腔医学, 2024, 44(6): 426-432. |
[7] | 孙昕奕, 潘玥彤, 陆欣悦, 吕中静, 袁健, 李家锋, 石欢. PTK7在口腔鳞癌中的表达分析及其生物学功能研究[J]. 口腔医学, 2024, 44(4): 268-275. |
[8] | 梁梦晴, 李志萍, 孟箭. 头颈部恶性肿瘤根治术后下肢深静脉血栓形成的风险预测模型构建[J]. 口腔医学, 2024, 44(4): 276-281. |
[9] | 万锦波, 钱一言, 王羽立, 肖娜, 卞一峰, 杜一飞. 经侧方颈纹入路行选择性颈淋巴结清扫术的临床初探[J]. 口腔医学, 2024, 44(3): 173-176. |
[10] | 张亮亮, 古建昌, 刘云, 王晓岚, 柳云霞. 1990—2019年中国归因于饮酒的口腔癌死亡趋势及年龄-时期-队列模型分析[J]. 口腔医学, 2024, 44(3): 177-183. |
[11] | 吉幻,许华宁,胡利,丁旭,傅振. 超声造影在下颌骨良性病变诊断中的价值[J]. 口腔医学, 2023, 43(12): 1091-1095. |
[12] | 白雪颖, 沙桐, 史册. 肾透明细胞癌腮腺转移1例及文献复习[J]. 口腔医学, 2023, 43(11): 1024-1027. |
[13] | 刘钟毓, 白丁, 赵雪峰. RANKL靶向抑制对骨纤维结构不良治疗的研究进展[J]. 口腔医学, 2023, 43(11): 1028-1033. |
[14] | 吉幻, 李萌, 姚恩惠, 钟旖, 张雨垚, 武和明, 李斌. 长链非编码RNA LINC00958在头颈部鳞状细胞癌的表达和初步研究[J]. 口腔医学, 2023, 43(11): 968-974. |
[15] | 佟雪溪, 赵刚. miR-191-5p通过靶向TJP1调控Cal-27细胞增殖、侵袭和迁移的体外研究[J]. 口腔医学, 2023, 43(11): 981-988. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||