[1] |
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ[J]. Exp Gerontol, 2019, 128: 110752.
|
[2] |
Lim H, Kwon YS, Kim D, et al. Flavonoids from Scutellaria baicalensis inhibit senescence-associated secretory phenotype production by interrupting IκBζ/C/EBPβ pathway: Inhibition of age-related inflammation[J]. Phytomedicine, 2020, 76: 153255.
|
[3] |
Shao Z, Wang B, Shi Y, et al. Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis[J]. Osteoarthritis Cartilage, 2021, 29(3): 413-422.
|
[4] |
Kang C, Xu QK, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J]. Science, 2015, 349(6255): aaa5612.
|
[5] |
Cayo A, Segovia R, Venturini W, et al. mTOR activity and autophagy in senescent cells, a complex partnership[J]. Int J Mol Sci, 2021, 22(15): 8149.
|
[6] |
Liu YK, Zhang ZA, Li J, et al. Piezo1 transforms mechanical stress into pro senescence signals and promotes osteoarthritis severity[J]. Mech Ageing Dev, 2023, 216: 111880.
|
[7] |
Teo YV, Rattanavirotkul N, Olova N, et al. Notch signaling mediates secondary senescence[J]. Cell Rep, 2019, 27(4): 997-1007. e5.
doi: S2211-1247(19)30451-6
pmid: 31018144
|
[8] |
Tasdemir N, Banito A, Roe JS, et al. BRD4 connects enhancer remodeling to senescence immune surveillance[J]. Cancer Discov, 2016, 6(6): 612-629.
doi: 10.1158/2159-8290.CD-16-0217
pmid: 27099234
|
[9] |
An YN, Zhang HF, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis[J]. FASEB J, 2019, 33(11): 12515-12527.
doi: 10.1096/fj.201802805RR
pmid: 31461386
|
[10] |
Han Y, Huang Y, Gao P, et al. Leptin aggravates periodontitis by promoting M1 polarization via NLRP3[J]. J Dent Res, 2022, 101(6): 675-685.
|
[11] |
Chen ZM, Zhong H, Wei JS, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis[J]. Arthritis Res Ther, 2019, 21(1): 300.
doi: 10.1186/s13075-019-2085-6
pmid: 31870428
|
[12] |
Tao HQ, Li WM, Zhang W, et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways[J]. Pharmacol Res, 2021, 174: 105967.
|
[13] |
胡萍, 李雯, 饶小波. 二甲双胍调节高糖环境下人牙周膜细胞NLRP3炎症小体激活的机制研究[J]. 口腔医学, 2023, 43(9): 775-780.
|
[14] |
Fu JN, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316.
doi: 10.1146/annurev-immunol-081022-021207
pmid: 36750315
|
[15] |
Liu DL, Richardson G, Benli FM, et al. Inflammageing in the cardiovascular system: Mechanisms, emerging targets, and novel therapeutic strategies[J]. Clin Sci, 2020, 134(17): 2243-2262.
|
[16] |
Isola G, Polizzi A, Santonocito S, et al. Periodontitis activates the NLRP3 inflammasome in serum and saliva[J]. J Periodontol, 2022, 93(1): 135-145.
|
[17] |
Chen YY, Yang QD, Lv CH, et al. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation[J]. Cell Prolif, 2021, 54(2): e12973.
|
[18] |
Xin YZ, Wang W, Mao EY, et al. Targeting NLRP3 inflammasome alleviates synovitis by reducing pyroptosis in rats with experimental temporomandibular joint osteoarthritis[J]. Mediators Inflamm, 2022, 2022(1): 2581151.
|
[19] |
Zhou QL, Ren Q, Jiao LH, et al. The potential roles of JAK/STAT signaling in the progression of osteoarthritis[J]. Front Endocrinol, 2022, 13: 1069057.
|
[20] |
Inci N, Akyildiz EO, Bulbul AA, et al. Transcriptomics and proteomics analyses reveal JAK signaling and inflammatory phenotypes during cellular senescence in blind mole rats: The reflections of superior biology[J]. Biology, 2022, 11(9): 1253.
|
[21] |
Chang Q, Bournazou E, Sansone P, et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis[J]. Neoplasia, 2013, 15(7): 848-862.
doi: 10.1593/neo.13706
pmid: 23814496
|
[22] |
Wu WJ, Fu JY, Gu YJ, et al. JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells[J]. J Endocrinol, 2020, 245(1): 141-153.
doi: 10.1530/JOE-19-0518
pmid: 32045363
|
[23] |
Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8[J]. Aging, 2009, 1(4): 402-411.
|
[24] |
Perrott KM, Wiley CD, Desprez PY, et al. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells[J]. Geroscience, 2017, 39(2): 161-173.
doi: 10.1007/s11357-017-9970-1
pmid: 28378188
|
[25] |
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072.
doi: 10.1038/nrdp.2016.72
pmid: 27734845
|
[26] |
Chen YH, Zhang X, Attarian D, et al. Synergistic roles of CBX4 chromo and SIM domains in regulating senescence of primary human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2023, 25(1): 197.
|
[27] |
Lopez J, Al-Nakkash L, Broderick TL, et al. Genistein suppresses IL-6 and MMP-13 to attenuate osteoarthritis in obese diabetic mice[J]. Metabolites, 2023, 13(9): 1014.
|
[28] |
Maroun G, Fissoun C, Villaverde M, et al. Senescence-regulatory factors as novel circulating biomarkers and therapeutic targets in regenerative medicine for osteoarthritis[J]. Joint Bone Spine, 2024, 91(2): 105640.
|
[29] |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6): 775-781.
doi: 10.1038/nm.4324
pmid: 28436958
|
[30] |
Xu M, Bradley EW, Weivoda MM, et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(6): 780-785.
|
[31] |
Tan QY, Wang Q, Kuang L, et al. TGF-β/Alk5 signaling prevents osteoarthritis initiation via regulating the senescence of articular cartilage stem cells[J]. J Cell Physiol, 2021, 236(7): 5278-5292.
|
[32] |
Platas J, Guillén MI, Gomar F, et al. Anti-senescence and anti-inflammatory effects of the C-terminal moiety of PTHrP peptides in OA osteoblasts[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(5): 624-631.
|
[33] |
Burger MG, Steinitz A, Geurts J, et al. Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts[J]. Int J Mol Sci, 2017, 18(12): 2517.
|
[34] |
Su W, Liu G, Mohajer B, et al. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2[J]. Elife, 2022, 11: e79773.
|
[35] |
Lopes EBP, Filiberti A, Husain SA, et al. Immune contributions to osteoarthritis[J]. Curr Osteoporos Rep, 2017, 15(6): 593-600.
doi: 10.1007/s11914-017-0411-y
pmid: 29098574
|
[36] |
Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28(5): 555-561.
|
[37] |
Dong L, Zhao YJ, Sun C, et al. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18[J]. Int Immunopharmacol, 2023, 124: 110878.
|
[38] |
Sebastian A, Hum NR, McCool JL, et al. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis[J]. Front Immunol, 2022, 13: 938075.
|
[39] |
Luan TK, Yang X, Kuang G, et al. Identification and analysis of neutrophil extracellular trap-related genes in osteoarthritis by bioinformatics and experimental verification[J]. J Inflamm Res, 2023, 16: 3837-3852.
doi: 10.2147/JIR.S414452
pmid: 37671131
|
[40] |
Ikegami K, Yamashita M, Suzuki M, et al. Cellular senescence with SASP in periodontal ligament cells triggers inflammation in aging periodontal tissue[J]. Aging, 2023, 15(5): 1279-1305.
|
[41] |
Aquino-Martinez R. The emerging role of accelerated cellular senescence in periodontitis[J]. J Dent Res, 2023, 102(8): 854-862.
|
[42] |
Chen SJ, Zhou D, Liu OS, et al. Cellular senescence and periodontitis: Mechanisms and therapeutics[J]. Biology, 2022, 11(10): 1419.
|
[43] |
Roato I, Baima G, Orrico C, et al. Senescent markers expressed by periodontal ligament-derived stem cells (PDLSCs) harvested from patients with periodontitis can be rejuvenated by RG108[J]. Biomedicines, 2023, 11(9): 2535.
|
[44] |
Li Q, Zhai YH, Man XX, et al. Inhibition of DNA methyltransferase by RG108 promotes pluripotency-related character of porcine bone marrow mesenchymal stem cells[J]. Cell Reprogram, 2020, 22(2): 82-89.
doi: 10.1089/cell.2019.0060
pmid: 32125888
|
[45] |
Hernández L, Terradas M, Camps J, et al. Aging and radiation: Bad companions[J]. Aging Cell, 2015, 14(2): 153-161.
doi: 10.1111/acel.12306
pmid: 25645467
|
[46] |
Costa S, Reagan MR. Therapeutic irradiation: Consequences for bone and bone marrow adipose tissue[J]. Front Endocrinol, 2019, 10: 587.
doi: 10.3389/fendo.2019.00587
pmid: 31555210
|
[47] |
Li XH, Ha CT, Fu D, et al. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence[J]. PLoS One, 2012, 7(5): e36604.
|
[48] |
Wang YY, Xu LS, Wang JP, et al. Radiation induces primary osteocyte senescence phenotype and affects osteoclastogenesis in vitro[J]. Int J Mol Med, 2021, 47(5): 76.
|
[49] |
Geng QH, Wang S, Heng K, et al. Astaxanthin attenuates irradiation-induced osteoporosis in mice by inhibiting oxidative stress, osteocyte senescence, and SASP[J]. Food Funct, 2022, 13(22): 11770-11779.
|
[50] |
Bai JT, Wang YY, Wang JP, et al. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling[J]. Am J Physiol Cell Physiol, 2020, 318(5): C1005-C1017.
|
[51] |
Li HX, Xiao ZS, Quarles LD, et al. Osteoporosis: Mechanism, molecular target and current status on drug development[J]. Curr Med Chem, 2021, 28(8): 1489-1507.
|
[52] |
Farr JN, Fraser DG, Wang HT, et al. Identification of senescent cells in the bone microenvironment[J]. J Bone Miner Res, 2016, 31(11): 1920-1929.
doi: 10.1002/jbmr.2892
pmid: 27341653
|
[53] |
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice[J]. Nat Med, 2017, 23(9): 1072-1079.
doi: 10.1038/nm.4385
pmid: 28825716
|
[54] |
Kirkland JL, Tchkonia T. Senolytic drugs: From discovery to translation[J]. J Intern Med, 2020, 288(5): 518-536.
|
[55] |
Kumar G, Roger PM, Ticchioni M, et al. T cells from chronic bone infection show reduced proliferation and a high proportion of CD28- CD4 T cells[J]. Clin Exp Immunol, 2014, 176(1): 49-57.
doi: 10.1111/cei.12245
pmid: 24298980
|
[56] |
González-Osuna L, Sierra-Cristancho A, Rojas C, et al. Premature senescence of T-cells favors bone loss during osteolytic diseases. A new concern in the osteoimmunology arena[J]. Aging Dis, 2021, 12(5): 1150-1161.
|