[1] |
Lee C, Choi YJ, Jeon KJ, et al. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders[J]. Dentomaxillofac Radiol, 2021, 50(5): 20200584.
|
[2] |
Deregibus A, Ferrillo M, Grazia Piancino M, et al. Are occlusal splints effective in reducing myofascial pain in patients with muscle-related temporomandibular disorders?A randomized-controlled trial[J]. Turk J Phys Med Rehabil, 2021, 67(1): 32-40.
|
[3] |
Frenkel B, Rachmiel A. Proinflammatory cytokines levels in patients with temporomandibular joint disorder undergoing arthroscopy[J]. Oral Maxillofac Surg, 2022, 26(4): 575-580.
|
[4] |
Dauvé J, Belloy N, Rivet R, et al. Differential MMP-14 targeting by lumican-derived peptides unraveled by in silico approach[J]. Cancers, 2021, 13(19): 4930.
|
[5] |
Duval E, Bigot N, Hervieu M, et al. Asporin expression is highly regulated in human chondrocytes[J]. Mol Med, 2011, 17(7/8): 816-823.
|
[6] |
Ege B, Erdogmus Z, Bozgeyik E, et al. Asporin levels in patients with temporomandibular joint disorders[J]. J Oral Rehabil, 2021, 48(10): 1109-1117.
|
[7] |
Hu Y, Zhang X, Liu S, et al. Ultrasound-guided vs conventional arthrocentesis for management of temporomandibular joint disorders: A systematic review and meta-analysis[J]. Cranio, 2023, 41(3): 264-273.
|
[8] |
傅开元, 雷杰. 颞下颌关节紊乱病的分类、诊断及治疗进展[J]. 口腔医学, 2024, 44(1):6-10.
|
[9] |
Blicharz G, Rymarczyk M, Rogulski M, et al. Methods of masseter and temporal muscle thickness and elasticity measurements by ultrasound imaging: A literature review[J]. Curr Med Imaging, 2021, 17(6): 707-713.
|
[10] |
Giannini S, Chiogna G, Guglielmi G, et al. Dynamic weight-bearing magnetic resonance in the clinical diagnosis of internal temporomandibular joint disorders[J]. Semin Musculoskelet Radiol, 2019, 23(6): 634-642.
doi: 10.1055/s-0039-1697938
pmid: 31745953
|
[11] |
何峰, 于世宾. 程序性坏死在颞下颌关节骨关节炎软骨退变中的研究进展[J]. 口腔医学研究, 2021, 37(1): 15-18.
doi: 10.13701/j.cnki.kqyxyj.2021.01.004
|
[12] |
滕颖萱, 冯剑颖. 类风湿关节炎与颞下颌关节紊乱病的相关性研究进展[J]. 口腔医学, 2023, 43(9):861-864.
|
[13] |
Fan R, Yan X, Zhang W. Relationship between asporin and extracellularmatrix behavior: A literature review[J]. Medicine, 2022, 101(51): e32490.
|
[14] |
Sobhan MR, Mehdinejad M, Jamaladini MH, et al. Association between aspartic acid repeat polymorphism of the asporin gene and risk of knee osteoarthritis: A systematic review and meta-analysis[J]. Acta Orthop Traumatol Turc, 2017, 51(5): 409-415.
|
[15] |
Liu L, Yu H, Long Y, et al. Asporin inhibits collagen matrix-mediated intercellular mechanocommunications between fibroblasts during keloid progression[J]. FASEB J, 2021, 35(7): e21705.
|
[16] |
Zhan S, Wang T, Li J, et al. Asporin interacts with HER2 to promote thyroid cancer metastasis the MAPK/EMT signaling pathway[J]. Front Oncol, 2022, 12: 762180.
|
[17] |
Liu L, Zhao C, Zhang H, et al. Asporin regulated by miR-26b-5p mediates chondrocyte senescence and exacerbates osteoarthritis progression TGF-β1/Smad2 pathway[J]. Rheumatology(Oxford), 2022, 61(6): 2631-2643.
|
[18] |
Moghimi N, Nasseri S, Ghafouri F, et al. Frequency of Growth Differentiation Factor 5 rs143383 and asporin D-repeat polymorphisms in patients with hand and knee osteoarthritis in Kurdistan province[J]. Int J Rheum Dis, 2021, 24(5): 694-700.
doi: 10.1111/1756-185X.14097
pmid: 33861510
|
[19] |
Koh SM, Chan CK, Teo SH, et al. Elevated plasma and synovial fluid interleukin-8 and interleukin-18 may be associated with the pathogenesis of knee osteoarthritis[J]. Knee, 2020, 27(1): 26-35.
doi: S0968-0160(19)30254-6
pmid: 31917106
|
[20] |
Jia M, Lv Y, Xu Y, et al. A comparative analysis of NLRP3-related inflammatory mediators in synovial fluid in temporomandibular joint osteoarthritis and internal derangement[J]. BMC Musculoskelet Disord, 2021, 22(1): 229.
|