›› 2020, Vol. 40 ›› Issue (1): 71-77.
邵伟华1,李晋1,龚炜韬1,俞张红1,韩兴怡1,章馨钰1,杨建荣1,李中武2
收稿日期:
2019-05-15
修回日期:
2019-07-22
出版日期:
2020-01-28
发布日期:
2020-01-16
通讯作者:
李中武
E-mail:953212797@qq.com
基金资助:
Received:
2019-05-15
Revised:
2019-07-22
Online:
2020-01-28
Published:
2020-01-16
摘要: Hippo 信号通路是近年来新发现的一个高度保守的蛋白激酶级联通路。其中,TAZ/YAP是该信号通路中核心的效应分子。大量研究证实,TAZ/YAP与人类大多数恶性肿瘤的发生或生长密切相关,其异常活化可促进肿瘤细胞增殖、侵袭转移、增强化疗耐药及获得干细胞样特性。近年来研究表明,TAZ/YAP异常活化与头颈部肿瘤的发生发展密切相关,其有可能作为头颈部肿瘤治疗的潜在靶点。本文综述Hippo通路的最新研究进展,重点关注的是该通路中的TAZ/YAP在头颈部鳞状细胞癌中的调控作用,为头颈部鳞状细胞癌的研究和治疗提供新的思路和策略。
中图分类号:
邵伟华 李晋 龚炜韬 俞张红 韩兴怡 章馨钰 杨建荣 李中武. Hippo-TAZ/YAP信号通路在头颈部鳞状细胞癌中的研究进展[J]. 口腔医学, 2020, 40(1): 71-77.
[1] | Ferlay J, Soerjomataram I, Dikshit R, et al.Cancer incidence and mortality worldwide: sources,methods and major patterns in GLOBOCAN 2012[J].Int J Cancer, 2015, 136(5):E359-E386 |
[2] | Xu T, Wang W, Zhang S, et al.Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase[J].Development, 1995, 121(4):1053-1063 |
[3] | Halder G, Johnson R L.Hippo signaling: growth control and beyond[J].Development, 2011, 138(1):9-22 |
[4] | Yin M, Zhang L.Hippo signaling: a hub of growth control,tumor suppression and pluripotency maintenance[J].J Genet Genomics, 2011, 38(10):471-481 |
[5] | Kanai F, Marignani P A, Sarbassova D, et al.TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins[J].EMBO J, 2000, 19(24):6778-6791 |
[6] | 左钱飞, 白艳涛, 李佳乐, 等.对发育和肿瘤的调控及其功能的研究进展[J].现代生物医学进展, 2013, 13(02):379-381 |
[7] | 张丽娜, 占婷.信号通路与癌症相关研究进展[J].疑难病杂志, 2018, 17(12):1400-1404 |
[8] | Chen H I, Sudol M.The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules[J].Proc Natl Acad Sci U S A, 1995, 92(17):7819-7823 |
[9] | Strano S, Munarriz E, Rossi M, et al.Physical interaction with Yes-associated protein enhances p73 transcriptional activity[J].J Biol Chem, 2001, 276(18):15164-15173 |
[10] | Chan E H, Nousiainen M, Chalamalasetty R B, et al.The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1[J].Oncogene, 2005, 24(12):2076-2086 |
[11] | Harvey K, Tapon N.The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network[J].Nat Rev Cancer, 2007, 7(3):182-191 |
[12] | Zhao B, Li L, Lei Q, et al.The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version[J].Genes Dev, 2010, 24(9):862-874 |
[13] | Hoa L, Kulaberoglu Y, Gundogdu R, et al.The characterisation of LATS2 kinase regulation in Hippo-YAP signalling[J].Cell Signal, 2016, 28(5):488-497 |
[14] | Praskova M, Xia F, Avruch J.MOBKL1AMOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation[J].Curr Biol, 2008, 18(5):311-321 |
[15] | Sirio D, Leonardo M, Mariaceleste A, et al.Role of YAP/TAZ in mechanotransduction.[J].Nature, 2011, 474(7350):179-83 |
[16] | Aragona M, Panciera T, Manfrin A, et al.A mechanical checkpoint controls multicellular growth through YAPTAZ regulation by actin-processing factors[J].Cell, 2013, 154(5):1047-1059 |
[17] | Engler A J, Sen S, Sweeney H L, et al.Matrix elasticity directs stem cell lineage specification[J].Cell, 2006, 126(4):677-689 |
[18] | Pocaterra A, Santinon G, Romani P, et al.F-actin dynamics regulates mammalian organ growth and cell fate maintenance.[J].J Hepatol. 2019 Mar 14. pii: S0168-8278(19)30144-8., 2019, 8278(19):30144-8 |
[19] | Miller E, Yang J, DeRan M, et al.Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP[J].Chem Biol, 2012, 19(8):955-962 |
[20] | Cai H, Xu Y.The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells[J].Cell Commun Signal, 2013, 11(1):31-38 |
[21] | Mo J S, Yu F X, Gong R, et al.Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs)[J].Genes Dev, 2012, 26(19):2138-2143 |
[22] | Koo J H, Guan K.Interplay between YAP/TAZ and Metabolism.[J].Cell Metab. 2018 Aug 7;28(2):196-206., 2018, 28(2):196-206 |
[23] | Mo J S, Meng Z, Kim Y C, et al.Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway[J].Nat Cell Biol, 2015, 17(4):500-510 |
[24] | Ma B, Chen Y, Chen L, et al.Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase[J].Nat Cell Biol, 2015, 17(1):95-103 |
[25] | Xiang L, Gilkes D M, Hu H, et al.Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype[J].Oncotarget, 2014, 5(24):12509-12527 |
[26] | Conley S J, Gheordunescu E, Kakarala P, et al.Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia[J].Proc Natl Acad Sci U S A, 2012, 109(8):2784-2789 |
[27] | Schwab L P, Peacock D L, Majumdar D, et al.Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer[J].Breast Cancer Res, 2012, 14(1):R6-87 |
[28] | Segrelles C, Paramio J M, Lorz C.The transcriptional co-activator YAP: A new player in head and neck cancer.[J].Oral Oncol, 2018, 8(6):25-32 |
[29] | 苏冠月, 余泓池, 黄雯雯, 等.参与调控细胞上皮-间充质转化的研究进展[J].生物化学与生物物理进展, 2018, 45(07):705-713 |
[30] | Li L, Zhao J, Huang S, et al.MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway.[J].Gene, 2018, 64(1):240-247 |
[31] | Wei K, Tingting H, Yuhang Z, et al.miR-375 is involved in Hippo pathway by targeting YAP1/TEAD4-CTGF axis in gastric carcinogenesis.[J].Cell Death Dis, 2018, 9(2):12-92 |
[32] | Youngeun K, Eek-Hoon J.Regulation of the Hippo signaling pathway by ubiquitin modification.[J].BMB Rep, 2018, 51(3):143-150 |
[33] | L S R, W W N, Takaaki S, et al.Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation.[J].J Cell Biochem, 2018, 119(1):824-836 |
[34] | Chen X, Gu W, Wang Q, et al.C-MYC and BCL-2 mediate YAP-regulated tumorigenesis in OSCC[J].Oncotarget, 2018, 9(1):668-679 |
[35] | Moya I M, Halder G.Hippo-YAPTAZ signalling in organ regeneration and regenerative medicine[J].Nat Rev Mol Cell Biol, 2019, 20(4):211-226 |
[36] | Zhou Z, Hao Y, Liu N, et al.TAZ is a novel oncogene in non-small cell lung cancer[J].Oncogene, 2011, 30(18):2181-2186 |
[37] | Chan S W, Lim C J, Guo K, et al.A role for TAZ in migration,invasion,and tumorigenesis of breast cancer cells[J].Cancer Res, 2008, 68(8):2592-2598 |
[38] | Hanahan D, Weinberg R A.Hallmarks of cancer: the next generation[J].Cell, 2011, 144(5):646-674 |
[39] | Zanconato F, Forcato M, Battilana G, et al.Genome-wide association between YAPTAZTEAD and AP-1 at enhancers drives oncogenic growth[J].Nat Cell Biol, 2015, 17(9):1218-1227 |
[40] | Skibinski A, Breindel J L, Prat A, et al.The Hippo transducer TAZ interacts with the SWISNF complex to regulate breast epithelial lineage commitment[J].Cell Rep, 2014, 6(6):1059-1072 |
[41] | Sharma S, Goswami R, Zhang D X, et al.TRPV4 regulates matrix stiffness and TGFβ1‐induced epithelial‐mesenchymal transition[J].J Cell Mol Med, 2019, 23(2):761-774 |
[42] | L C C, A W R.A perspective on cancer cell metastasis.[J].Science, 2011, 331(6024):1559-64 |
[43] | P S.The epithelial-mesenchymal transition (EMT) phenomenon.[J].Ann Oncol, 2010, 1(1):89-92 |
[44] | Zanconato F, Piccolo S.Eradicating tumor drug resistance at its YAP-biomechanical roots[J].EMBO J, 2016, 35(5):459-461 |
[45] | Liu-Chittenden Y, Huang B, Shim J S, et al.Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J].Genes Dev, 2012, 26(12):1300-1305 |
[46] | Kulkarni M, Tan T Z, Syed S N, et al.RUNX1 and RUNX3 protect against YAP-mediated EMT,stem-ness and shorter survival outcomes in breast cancer[J].Oncotarget, 2018, 9(18):14175-14192 |
[47] | Qiu B, Wei W, Zhu J, et al.EMT induced by loss of LKB1 promotes migration and invasion of liver cancer cells through ZEB1-induced YAP signaling[J].Oncol Lett, 2018, 16(5):6465-6471 |
[48] | van Rensburg Helena J J, Taha A, Min L, et al.The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1.[J].Cancer Res, 2018, 78(6):1457-1470 |
[49] | Ni X, Tao J, Barbi J, et al.YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity[J].Cancer Discov, 2018, 8(8):1026-1043 |
[50] | Jiao S, Guan J, Chen M, et al.Targeting IRF3 as a YAP agonist therapy against gastric cancer[J].J Exp Med, 2018, 215(2):699-718 |
[51] | Beyer T A, Weiss A, Khomchuk Y, et al.Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells[J].Cell Rep, 2013, 5(6):1611-1624 |
[52] | Weiss A, Attisano L.The TGFbeta superfamily signaling pathway[J].Wiley Interdiscip Rev Dev Biol, 2013, 2(1):47-63 |
[53] | Varelas X, Sakuma R, Samavarchi-Tehrani P, et al.TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal[J].Nat Cell Biol, 2008, 10(7):837-848 |
[54] | Hiemer S E, Szymaniak A D, Varelas X.The transcriptional regulators TAZ and YAP direct transforming growth factor beta-induced tumorigenic phenotypes in breast cancer cells[J].J Biol Chem, 2014, 289(19):13461-13474 |
[55] | Yadav S, Barton M J, Nguyen N.Biophysical properties of cells for cancer diagnosis.[J].J Biomech, 2019, 86(1):1-7 |
[56] | Natalie W L M, Yaqi D, Jincheng W, et al.Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis.[J].Cancer Cell, 2018, 33(2):292-308 |
[57] | Lee H J, Ewere A, Diaz M F, et al.TAZ responds to fluid shear stress to regulate the cell cycle.[J].Cell Cycle, 2018, 17(2):147-153 |
[58] | Moreno-Vicente R, Pavón D M, Martín-Padura I, et al.Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP[J].Cell Rep, 2018, 25(6):1622-1635 |
[59] | Junling L, Liping Y, Qingyuan L, et al.Synaptopodin-2 suppresses metastasis of triple-negative breast cancer via inhibition of YAP/TAZ activity.[J].J Pathol, 2018, 244(1):71-83 |
[60] | Kai Y, Shengchun D, Lei C, et al.Netrin-1 promotes metastasis of gastric cancer by regulating YAP activity.[J].Biochem Biophys Res Commun, 2018, 496(1):76-82 |
[61] | Zhen S, Anja S, Tristan R, et al.Tenascin-C Promotes Tumor Cell Migration and Metastasis through Integrin α9β1-Mediated YAP Inhibition.[J].Cancer Res. 2018 Feb 15;78(4):950-961., 2018, 78(4):950-961 |
[62] | Zhang X, Zhao H, Li Y, et al.The role of YAPTAZ activity in cancer metabolic reprogramming[J].Mol Cancer, 2018, 17(1):134-144 |
[63] | Oliver-De L C J, Nardone G, Vrbsky J, et al.Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading.[J].Biomaterials, 2019, 205(1):64-80 |
[64] | Parrales A, Thoenen E, Iwakuma T.The interplay between mutant p53 and the mevalonate pathway[J].Cell Death Differ, 2018, 25(3):460-470 |
[65] | Di Agostino S, Valenti F, Sacconi A, et al.Long Non-coding MIR205HG Depletes Hsa-miR-590-3p Leading to Unrestrained Proliferation in Head and Neck Squamous Cell Carcinoma[J].Theranostics, 2018, 8(7):1850-1868 |
[66] | Ehsanian R, Brown M, Lu H, et al.YAP dysregulation by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation,survival and migration in head and neck cancer subsets[J].Oncogene, 2010, 29(46):6160-6171 |
[67] | Saladi S V, Ross K, Karaayvaz M, et al.ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation,Regenerative Proliferation,and Poor Prognosis[J].Cancer Cell, 2017, 31(1):35-49 |
[68] | Verduci L, Ferraiuolo M, Sacconi A, et al.The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53YAPTEAD transcription-competent complex[J].Genome Biol, 2017, 18(1):237-246 |
[69] | 周雅青, 杨蓉, 马刚.沉默可抑制鼻咽癌细胞的增殖、迁移及侵袭能力[J].南方医科大学学报, 2019, 39(03):286-291 |
[70] | Wei Z, Wang Y, Li Z, et al.Overexpression of Hippo pathway effector TAZ in tongue squamous cell carcinoma: correlation with clinicopathological features and patients' prognosis[J].J Oral Pathol Med, 2013, 42(10):747-754 |
[71] | Li Z, Wang Y, Zhu Y, et al.The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer[J].Mol Oncol, 2015, 9(6):1091-1105 |
[72] | Hiemer S E, Zhang L, Kartha V K, et al.A YAPTAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma[J].Mol Cancer Res, 2015, 13(6):957-968 |
[73] | 涂敏松, 李逸松, 张雄.蛋白在口腔鳞状细胞癌中的表达及意义[J].上海口腔医学, 2018, 27(04):415-418 |
[1] | 张震 王晓飞. 透明质酸及其在口腔颌面外科领域的研究应用[J]. , 2020, 40(2): 176-179. |
[2] | 雷远腾 李耀 唐正龙 王冬香 陈友利. TRAF6/c-fos在PTH加速兔下颌骨截骨术后正畸牙移动机制的初步研究[J]. , 2019, 39(6): 494-499. |
[3] | 杨丕山 宋爱梅. TNF-α/ NF-κB信号通路对牙周炎发展和牙周再生的影响及其干预[J]. , 2019, 39(1): 1-5. |
[4] | 杨何平 张洪武 王锡榜 杨书雄 王君 陈海蒂. 胸锁乳突肌肌瓣与美容切口在腮腺肿瘤术中的应用[J]. , 2018, 38(8): 704-707. |
[5] | 吴坡 羊书勇 鄢兰元 蒋佶 李焰 李浩 郑维银. 3D打印导板在头颈晚期恶性肿瘤125I粒子[J]. , 2018, 38(8): 708-712. |
[6] | 王琳璇 李永明 邱亚 孙立众 马文强 韩梅 米方林. 肿瘤坏死因子-α在正畸牙移动中作用的研究进展[J]. , 2018, 38(7): 648-652. |
[7] | 刘俊超 王晴萱 张冬梅 李琛 王宏岩 赵海礁 潘亚萍. 具核梭杆菌感染KB细胞影响细胞增殖和炎症因子分泌的研究[J]. , 2018, 38(2): 109-113. |
[8] | 吴胜利 范广宇 史圆圆 陶安军 许建辉 杨细虎. XIAP与口腔鳞癌局部淋巴结转移关系的研究[J]. , 2018, 38(2): 146-148. |
[9] | 赵昊明 赵华强. B7H5于口腔颌面头颈肿瘤免疫治疗中作为联合用药靶点的应用潜力探究[J]. , 2018, 38(11): 1048-1052. |
[10] | 张睿 葛少华. 二甲双胍潜在用途研究进展 [J]. , 2018, 38(10): 938-941. |
[11] | 于雪迪 孙红英. 代谢组学在口腔癌及口腔癌前病变标志物研究中的应用[J]. , 2017, 37(4): 369-372. |
[12] | 曹蓉蓉 徐江 李淑慧 马俊玥 吴佩玲. TNF-α影响鼠根尖乳头干细胞成骨/成牙本质能力的实验研究[J]. , 2017, 37(3): 208-213. |
[13] | 李珊珊 张瑾. 微小RNA与肿瘤坏死因子-α对成骨分化调控作用研究进展[J]. , 2017, 37(2): 180-183. |
[14] | 王利宏 张文彪 习利军 包爱琴 黄世光. 2型糖尿病对大鼠牙周组织及血清TNF-α、IL-6和PAI-1水平影响的研究[J]. , 2017, 37(10): 889-893. |
[15] | 李智 葛少华. 纳米二氧化钛在生物医学中的应用进展[J]. , 2017, 37(1): 85-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||