›› 2020, Vol. 40 ›› Issue (5): 465-470.
李媛1,达林泰2
收稿日期:2019-12-16
									
				
											修回日期:2020-02-19
									
				
									
				
											出版日期:2020-05-26
									
				
											发布日期:2020-06-08
									
			通讯作者:
					达林泰
											E-mail:qishi6658@hotmail.com
												基金资助:
Received:2019-12-16
									
				
											Revised:2020-02-19
									
				
									
				
											Online:2020-05-26
									
				
											Published:2020-06-08
									
			摘要: [摘要] 14-3-3蛋白普遍存在于真核细胞中,是高度保守的酸性蛋白家族,作为一种衔接蛋白参与细胞的多种调节过程,如细胞周期、代谢、细胞凋亡、疾病发生等。近年来研究发现14-3-3蛋白与多种肿瘤的发生发展相关联,可作为疾病早期诊断和治疗的新靶点。本文简述14-3-3蛋白家族在口腔鳞状细胞癌中的表达情况与作用。
中图分类号:
李媛 达林泰. 14-3-3蛋白在口腔鳞癌中的表达与作用机制研究进展[J]. 口腔医学, 2020, 40(5): 465-470.
| [1] | de Juan J, Garcia J, Lopez M, et al.Inclusion of extracapsular spread in the pTNM classification system: a proposal for patients with head and neck carcinoma[J].JAMA Otolaryngol Head Neck Surg, 2013, 139(5):483-488 | 
| [2] | Neal CL, Xu J, Li P, et al.Overexpression of 14-3-3zeta in cancer cells activates PI3K via binding the p85 regulatory subunit[J].Oncogene, 2012, 31(7):897-906 | 
| [3] | Lee JJ, Lee JS, Cui MN, et al.BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells[J]. Cell Death Dis, 2014, 5:e1537. | 
| [4] | Yu J, Chen L, Chen Y, et al.Wnt5a induces ROR1 to associate with 14-3-3zeta for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells[J].Leukemia, 2017, 31(12):2608-2614 | 
| [5] | Cau Y, Valensin D, Mori M, et al.Structure,function,involvement in diseases and targeting of 14-3-3 proteins: An update[J].Curr Med Chem, 2018, 25(1):5-21 | 
| [6] | Obsil T, Obsilova V.Structural basis of 14-3-3 protein functions[J].Semin Cell Dev Biol, 2011, 22(7):663-672 | 
| [7] | Freeman AK, Morrison DK.Proteins: diverse functions in cell proliferation and cancer progression[J].Semin Cell Dev Biol, 2011, 22(7):681-687 | 
| [8] | Pozuelo RM, Geraghty KM, Wong BH, et al.affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism,proliferation and trafficking[J].Biochem J, 2004, 379(Pt 2):395-408 | 
| [9] | Abdrabou A, Brandwein D, Wang Z.Differential subcellular distribution and translocation of seven 14-3-3 isoforms in response to EGF and during the cell cycle[J]. Int J Mol Sci, 2020, 21(1). | 
| [10] | 谢蕴灵, 罗海丹, 杨惠玲.影响肿瘤发生发展和治疗的细胞及分子机制[J].分子诊断与治疗杂志, 2018, 10(2):132-137 | 
| [11] | 韩雪娇, 李艳春, 孙立春.与恶性肿瘤关系的研究进展[J].实用肿瘤学杂志, 2017, 31(6):543-547 | 
| [12] | 郭冬芳, 党筝, 刘喆, 等.类风湿关节炎患者血清--η蛋白、免疫球蛋白的变化及其意义[J].中国实验诊断学, 2019, 23(5):784-787 | 
| [13] | Zhao S, Li B, Li C, et al.The apoptosis regulator 14-3-3eta and its potential as a therapeutic target in pituitary oncocytoma[J]. Front Endocrinol (Lausanne), 2019, 10:797. | 
| [14] | 王安杏, 马望歌, 陈方圆, 等.14-3-3η通过抑制内质网应激反应对H9c2心肌细胞的保护作用[J]. 中国医药导报, 2015(11):22-26. | 
| [15] | Shen J, Jiang F, Yang Y, et al.eta is a novel growth-promoting and angiogenic factor in hepatocellular carcinoma[J].J Hepatol, 2016, 65(5):953-962 | 
| [16] | Tang Y, Lv P, Sun Z, et al.beta promotes migration and invasion of human hepatocellular carcinoma cells by modulating expression of MMP2 and MMP9 through PI3KAktNF-kappaB pathway[J].PLoS One, 2016, 11(1):e146070- | 
| [17] | Li N, Wang H, Fan J, et al.Overexpression of 14-3-3theta promotes tumor metastasis and indicates poor prognosis in breast carcinoma[J].Oncotarget, 2014, 5(1):249-257 | 
| [18] | Zhao Y, Fang X, Fang H, et al.ATPR-induced G0 /G1 phase arrest in gastric cancer cells by regulating the binding of 14-3-3epsilon and filamin A[J]. Cancer Med, 2018:7(7), 3373-3384. | 
| [19] | Morrison D.modulators of signaling proteins?[J].Science, 1994, 266(5182):56-57 | 
| [20] | Chan SW, Lim CJ, Chen L, et al.The Hippo pathway in biological control and cancer development[J].J Cell Physiol, 2011, 226(4):928-939 | 
| [21] | Lee CG, Park GY, Han YK, et al.Roles of 14-3-3eta in mitotic progression and its potential use as a therapeutic target for cancers[J].Oncogene, 2013, 32(12):1560-1569 | 
| [22] | Kamalesh D, Ramireddy S, Raguraman P, et al.Expediting dynamics approach to understand the influence of 14-3-3zeta causing metastatic cancer through the interaction of YAP1 and beta-TRCP[J].Mol Biosyst, 2017, 13(10):1981-1992 | 
| [23] | Han DC, Rodriguez LG, Guan JL.Identification of a novel interaction between integrin beta1 and 14-3-3beta[J].Oncogene, 2001, 20(3):346-357 | 
| [24] | Santoro MM, Gaudino G, Marchisio PC.The MSP receptor regulates alpha6beta4 and alpha3beta1 integrins via 14-3-3 proteins in keratinocyte migration[J].Dev Cell, 2003, 5(2):257-271 | 
| [25] | Barrallo-Gimeno A, Nieto M A.The Snail genes as inducers of cell movement and survival: implications in development and cancer[J].Development, 2005, 132(14):3151-3161 | 
| [26] | Hou Z, Peng H, White D E, et al.binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation[J].Cancer Res, 2010, 70(11):4385-4393 | 
| [27] | 刘颜, 杨彦, 何俊闯, 等.协同非典型蛋白激酶-ι经上皮-间充质转化促进胆管癌侵袭转移[J].中华实验外科杂志, 2018, 35(9):1670-1673 | 
| [28] | Lu J, Guo H, Treekitkarnmongkol W, et al.zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition[J].Cancer Cell, 2009, 16(3):195-207 | 
| [29] | Ralhan R, Desouza LV, Matta A, et al.Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling,multidimensional liquid chromatography,and tandem mass spectrometry[J].Mol Cell Proteomics, 2008, 7(6):1162-1173 | 
| [30] | Matta A, Masui O, Siu KW, et al.Identification of 14-3-3zeta associated protein networks in oral cancer[J].Proteomics, 2016, 16(7):1079-1089 | 
| [31] | Mikami T, Maruyama S, Abe T, et al.Keratin 17 is co-expressed with 14-3-3 sigma in oral carcinoma in situ and squamous cell carcinoma and modulates cell proliferation and size but not cell migration[J].Virchows Arch, 2015, 466(5):559-569 | 
| [32] | Jin LM, Han XH, Jie YQ, et al.zeta silencing retards tongue squamous cell carcinoma progression by inhibiting cell survival and migration[J].Cancer Gene Ther, 2016, 23(7):206-213 | 
| [33] | Ralhan R, Masui O, Desouza LV, et al.Identification of proteins secreted by head and neck cancer cell lines using LC-MSMS: Strategy for discovery of candidate serological biomarkers[J].Proteomics, 2011, 11(12):2363-2376 | 
| [34] | Han X, Han Y, Jiao H, et al.zeta regulates immune response through Stat3 signaling in oral squamous cell carcinoma[J].Mol Cells, 2015, 38(2):112-121 | 
| [35] | Chauhan SS, Kaur J, Kumar M, et al.Prediction of recurrence-free survival using a protein expression-based risk classifier for head and neck cancer[J]. Oncogenesis, 2015, 4:e147. | 
| [36] | Kumar M, Matta A, Masui O, et al.Nuclear heterogeneous nuclear ribonucleoprotein D is associated with poor prognosis and interactome analysis reveals its novel binding partners in oral cancer[J]. J Transl Med, 2015, 13:285. | 
| [37] | Subramanian RR, Zhang H, Wang H, et al.Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins[J].Exp Cell Res, 2004, 294(2):581-591 | 
| [38] | Li X H, Kikuchi K, Zheng Y, et al.Downregulation and translocation of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma[J].Oral Oncol, 2011, 47(3):217-223 | 
| [39] | Ballone A, Centorrino F, Ottmann C.A case study in PPI modulation[J].Molecules, 2018, 23(6):1386- | 
| [40] | Peng C, Jia X, Xiong Y, et al.The 14-3-3sigmaGSK3betabeta-cateninZEB1 regulatory loop modulates chemo-sensitivity in human tongue cancer[J].Oncotarget, 2015, 6(24):20177-20189 | 
| [41] | Matta A, DeSouza LV, Ralhan R, et al.Small interfering RNA targeting 14-3-3zeta increases efficacy of chemotherapeutic agents in head and neck cancer cells[J].Mol Cancer Ther, 2010, 9(10):2676-2688 | 
| [42] | Macha MA, Matta A, Chauhan S, et al.14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells[J]. BMC Cancer, 2010, 10:655. | 
| [43] | Srivastava G, Matta A, Fu G, et al.Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: Implications for oral cancer therapy[J].Mol Oncol, 2015, 9(8):1720-1735 | 
| [1] | 王雨 施琳. PI3K/AKT通路介导口腔鳞状细胞癌发生发展相关因素的研究进展[J]. , 2019, 39(6): 552-556. | 
| [2] | 毕也 周童 贾颜鸿 徐召南 赵轩一 张泽兵. MMP-14在口腔癌患者预后及转移的临床病理学研究[J]. , 2018, 38(8): 685-689. | 
| [3] | 尹学敏 尹晓东 王德明 余少壮 李祥彬 王 鹏. 口腔鳞状细胞癌的DNA定量分析及临床意义[J]. , 2018, 38(7): 616-619. | 
| [4] | 杨丽群 肖璇 李晨曦 武文妍 沈雪敏 周曾同 施琳俊 范媛. 无创检测口腔白斑及鳞癌中人乳头瘤病毒及其分型[J]. , 2018, 38(6): 528-532. | 
| [5] | 杨宗澄 闫广兴 王若琳 徐欣. microRNA表达调控与口腔鳞状细胞癌[J]. , 2018, 38(5): 476-480. | 
| [6] | 吴胜利 范广宇 史圆圆 陶安军 许建辉 杨细虎. XIAP与口腔鳞癌局部淋巴结转移关系的研究[J]. , 2018, 38(2): 146-148. | 
| [7] | 李丹丹 范海霞 郑金华. 口腔鳞癌中E-钙粘蛋白和基质金属蛋白酶-1的表达与患者预后的关系[J]. , 2018, 38(1): 39-43. | 
| [8] | 孙扬 周倩蓉 程勇 吴启超 丁小军 余优成. 十字孢碱对口腔鳞状细胞癌CAL27细胞增殖和凋亡的影响[J]. , 2017, 37(7): 598-602. | 
| [9] | 王舒仪 郑彩云 林思思 施更生. 口腔鳞状细胞癌中Slug及E-cadherin的表达[J]. , 2017, 37(3): 214-218. | 
| [10] | 张侃 陈利红. 外周血嗜酸性粒细胞检测对口腔鳞状细胞癌术后的预后意义[J]. , 2016, 36(6): 546-549. | 
| [11] | 王俊杰 赵腾达 刘兴光 朱王勇 梁培盛 陶谦. Axl基因在口腔鳞状细胞癌中的表达及意义[J]. , 2016, 36(4): 333-336. | 
| [12] | 刘秉尧 张森林 曹罡 董震 陈伟 徐金科. MicroRNA27b 通过靶向调控FZD7抑制口腔鳞状细胞癌细胞的增殖[J]. , 2016, 36(3): 200-205. | 
| [13] | 尹东 张娜 袁小超 韩志刚 白晓萍 白晶. AMD3100对口腔鳞状细胞癌细胞生物学行为的影响[J]. , 2015, 35(2): 93-95. | 
| [14] | 陈虎 周培培 杨蓉 张子文 戈杰 江宏兵. ATB2、NANOG和OCT4在口腔鳞癌中的表达及临床意义[J]. , 2015, 35(12): 1016-1019. | 
| [15] | 沈林汉 李宏卫 詹甜甜 谢龙. miRNA-448在肿瘤中作用的研究进展[J]. , 2015, 35(10): 889-892. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
苏公网安备32010602011670号