[1] |
胡茜, 张颖, 李堃, 等. 黄连主要成分小檗碱的临床药理作用探析[J]. 中国中医药现代远程教育, 2021, 19(24):203-205.
|
[2] |
Schenkein HA, Papapanou PN, Genco R, et al. Mechanisms underlying the association between periodontitis and atherosclerotic disease[J]. Periodontol 2000, 2020, 83(1):90-106.
doi: 10.1111/prd.12304
pmid: 32385879
|
[3] |
Horliana ACRT, Chambrone L, Foz AM, et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: A systematic review[J]. PLoS One, 2014, 9(5):e98271.
|
[4] |
Mylonakis E, Calderwood SB. Infective endocarditis in adults[J]. N Engl J Med, 2001, 345(18):1318-1330.
|
[5] |
van der Meer JT, Thompson J, Valkenburg HA, et al. Epidemiology of bacterial endocarditis in The Netherlands. Ⅱ. Antecedent procedures and use of prophylaxis[J]. Arch Intern Med, 1992, 152(9):1869-1873.
pmid: 1520053
|
[6] |
Chiu B. Multiple infections in carotid atherosclerotic plaques[J]. Am Heart J, 1999, 138(5 Pt 2):S534-S536.
doi: 10.1016/s0002-8703(99)70294-2
pmid: 10539867
|
[7] |
Kurita-Ochiai T, Yamamoto M. Periodontal pathogens and atherosclerosis: Implications of inflammation and oxidative modification of LDL[J]. Biomed Res Int, 2014, 2014: 595981.
|
[8] |
Nocini R, Favaloro EJ, Sanchis-Gomar F, et al. Periodontitis, coronary heart disease and myocardial infarction: Treat one, benefit all[J]. Blood Coagul Fibrinolysis, 2020, 31(6):339-345.
|
[9] |
Qin XR, Zhao YF, Guo YX. Periodontal disease and myocardial infarction risk: A meta-analysis of cohort studies[J]. Am J Emerg Med, 2021, 48: 103-109.
doi: 10.1016/j.ajem.2021.03.071
pmid: 33866268
|
[10] |
Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus[J]. Periodontol 2000, 2020, 83(1):59-65.
doi: 10.1111/prd.12271
pmid: 32385875
|
[11] |
Matsha TE, Prince Y, Davids S, et al. Oral microbiome signatures in diabetes mellitus and periodontal disease[J]. J Dent Res, 2020, 99(6):658-665.
doi: 10.1177/0022034520913818
pmid: 32298191
|
[12] |
Hartstra AV, Bouter KEC, Bäckhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care, 2015, 38(1):159-165.
doi: 10.2337/dc14-0769
pmid: 25538312
|
[13] |
Hernandez CJ, Guss JD, Luna M, et al. Links between the microbiome and bone[J]. J Bone Miner Res, 2016, 31(9):1638-1646.
doi: 10.1002/jbmr.2887
pmid: 27317164
|
[14] |
Xiao E, Mattos M, Vieira GHA, et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity[J]. Cell Host Microbe, 2017, 22(1):120-128.e4.
doi: S1931-3128(17)30254-8
pmid: 28704648
|
[15] |
Navarro-Sanchez AB, Faria-Almeida R, Bascones-Martinez A. Effect of non-surgical periodontal therapy on clinical and immunological response and glycaemic control in type 2 diabetic patients with moderate periodontitis[J]. J Clin Periodontol, 2007, 34(10):835-843.
doi: 10.1111/j.1600-051X.2007.01127.x
pmid: 17850602
|
[16] |
Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: A two-way relationship[J]. Diabetologia, 2012, 55(1):21-31.
doi: 10.1007/s00125-011-2342-y
pmid: 22057194
|
[17] |
Nakamura H, Jinzu H, Nagao K, et al. Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients[J]. Nutr Diabetes, 2014, 4(9):e133.
|
[18] |
Tian J, Liu C, Zheng X, et al. Porphyromonas gingivalis induces insulin resistance by increasing BCAA levels in mice[J]. J Dent Res, 2020, 99(7):839-846.
doi: 10.1177/0022034520911037
pmid: 32176550
|
[19] |
Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors[J]. Sci Adv, 2019, 5(1):eaau3333.
|
[20] |
Poole S, Singhrao SK, Chukkapalli S, et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains[J]. J Alzheimers Dis, 2015, 43(1):67-80.
|
[21] |
Liu XX, Jiao B, Liao XX, et al. Analysis of salivary microbiome in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2019, 72(2):633-640.
|
[22] |
Adams B, Nunes JM, Page MJ, et al. Parkinson’s disease: A systemic inflammatory disease accompanied by bacterial inflammagens[J]. Front Aging Neurosci, 2019, 11: 210.
doi: 10.3389/fnagi.2019.00210
pmid: 31507404
|
[23] |
Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: Focus on astrocytes[J]. Mol Neurobiol, 2014, 49(1):28-38.
doi: 10.1007/s12035-013-8483-x
pmid: 23783559
|
[24] |
Yao J, Kong WJ, Jiang JD. Learning from berberine: Treating chronic diseases through multiple targets[J]. Sci China Life Sci, 2015, 58(9):854-859.
doi: 10.1007/s11427-013-4568-z
pmid: 24174332
|
[25] |
Cai Y, Xin QQ, Lu JJ, et al. A new therapeutic candidate for cardiovascular diseases: Berberine[J]. Front Pharmacol, 2021, 12: 631100.
|
[26] |
Wan Q, Liu ZY, Yang YP, et al. Suppressive effects of berberine on atherosclerosis via downregulating visfatin expression and attenuating visfatin-induced endothelial dysfunction[J]. Int J Mol Med, 2018, 41(4):1939-1948.
|
[27] |
Feng XJ, Sureda A, Jafari S, et al. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics[J]. Theranostics, 2019, 9(7):1923-1951.
doi: 10.7150/thno.30787
pmid: 31037148
|
[28] |
Li SJ, Wu CH, Chen JX, et al. An effective solution to discover synergistic drugs for anti-cerebral ischemia from traditional Chinese medicinal formulae[J]. PLoS One, 2013, 8(11):e78902.
|
[29] |
Lan JR, Zhao YY, Dong FX, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension[J]. J Ethnopharmacol, 2015, 161: 69-81.
doi: 10.1016/j.jep.2014.09.049
pmid: 25498346
|
[30] |
Zhang H, Niu HY, Yuan XZ, et al. Trimetazidine combined with berberine on endothelial function of patients with coronary heart disease combined with primary hypertension[J]. Exp Ther Med, 2018, 16(2):1318-1322.
doi: 10.3892/etm.2018.6278
pmid: 30116381
|
[31] |
Yin J, Xing HL, Ye JP. Efficacy of berberine in patients with type 2 diabetes mellitus[J]. Metabolism, 2008, 57(5):712-717.
|
[32] |
Chang WG, Chen L, Hatch GM. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies[J]. Biochem Cell Biol, 2015, 93(5):479-486.
doi: 10.1139/bcb-2014-0107
pmid: 25607236
|
[33] |
Kong WJ, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10(12):1344-1351.
doi: 10.1038/nm1135
pmid: 15531889
|
[34] |
Yang J, Yin JH, Gao HF, et al. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients[J]. Evid Based Complement Alternat Med, 2012, 2012: 363845.
|
[35] |
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy[J]. Lancet, 2005, 365(9467):1333-1346.
doi: 10.1016/S0140-6736(05)61032-X
pmid: 15823385
|
[36] |
Grundy SM. Drug therapy of the metabolic syndrome: Minimizing the emerging crisis in polypharmacy[J]. Nat Rev Drug Discov, 2006, 5(4):295-309.
pmid: 16582875
|
[37] |
Lane CA, Hardy J, Schott JM. Alzheimer’s disease[J]. Eur J Neurol, 2018, 25(1):59-70.
doi: 10.1111/ene.13439
pmid: 28872215
|
[38] |
Lin L, Li C, Zhang DY, et al. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model[J]. Neurochem Res, 2020, 45(5):1130-1141.
doi: 10.1007/s11064-020-02992-6
pmid: 32080784
|
[39] |
Chen Y, Chen YL, Liang YB, et al. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance[J]. Biomed Pharmacother, 2020, 121: 109670.
|
[40] |
Ashby FG, Valentin VV, von Meer SS. Differential effects of dopamine-directed treatments on cognition[J]. Neuropsychiatr Dis Treat, 2015, 11: 1859-1875.
|
[41] |
Wang Y, Tong Q, Ma SR, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota[J]. Signal Transduct Target Ther, 2021, 6(1):77.
|
[42] |
Huang SX, Liu HQ, Lin YW, et al. Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model[J]. Front Pharmacol, 2021, 11: 618787.
|
[43] |
Hu JP, Takahashi N, Yamada T. Coptidis rhizoma inhibits growth and proteases of oral bacteria[J]. Oral Dis, 2000, 6(5):297-302.
doi: 10.1111/j.1601-0825.2000.tb00142.x
pmid: 11002412
|
[44] |
王希, 赖筱姮, 林菁. 奥硝唑联合小檗碱对牙周致病菌的体外抗菌活性试验[J]. 中国卫生标准管理, 2019, 10(19):95-97.
|
[45] |
Xie Q, Johnson BR, Wenckus CS, et al. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model[J]. J Endod, 2012, 38(8):1114-1117.
|
[46] |
Tu HP, Fu MMJ, Kuo PJ, et al. Berberine’s effect on periodontal tissue degradation by matrix metalloproteinases: An in vitro and in vivo experiment[J]. Phytomedicine, 2013, 20(13):1203-1210.
|
[47] |
Song J, Wu QS, Jiang J, et al. Berberine reduces inflammation of human dental pulp fibroblast via miR-21/KBTBD7 axis[J]. Arch Oral Biol, 2020, 110: 104630.
|
[48] |
Zhang H, Shan Y, Wu Y, et al. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264.7 cells[J]. Int Immunopharmacol, 2017, 52: 93-100.
doi: S1567-5769(17)30339-9
pmid: 28888780
|
[49] |
Sun HL, Wu YR, Song FF, et al. Role of PCSK9 in the development of mouse periodontitis before and after treatment: A double-edged sword[J]. J Infect Dis, 2018, 217(4):667-680.
doi: 10.1093/infdis/jix574
pmid: 29294034
|
[50] |
Bui FQ, Almeida-da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease[J]. Biomed J, 2019, 42(1):27-35.
doi: S2319-4170(18)30263-4
pmid: 30987702
|
[51] |
Jungbauer G, Stähli A, Zhu XL, et al. Periodontal microorganisms and alzheimer disease: A causative relationship?[J]. Periodontol 2000, 2022, 89(1):59-82.
doi: 10.1111/prd.12429
pmid: 35244967
|
[52] |
Song TJ, Jeon J, Kim J. Cardiovascular risks of periodontitis and oral hygiene indicators in patients with diabetes mellitus[J]. Diabetes Metab, 2021, 47(6):101252.
|