口腔医学 ›› 2024, Vol. 44 ›› Issue (6): 475-480.doi: 10.13591/j.cnki.kqyx.2024.06.014
• 综述 • 上一篇
收稿日期:
2023-08-21
出版日期:
2024-06-28
发布日期:
2024-06-27
通讯作者:
钟雯怡 E-mail:基金资助:
WANG Bing,XIONG Yijing,LUO Qian,ZHONG Wenyi()
Received:
2023-08-21
Online:
2024-06-28
Published:
2024-06-27
摘要:
不同矢状向及垂直向的错牙合畸形,其颞下颌关节生长发育及最终的形态呈现不同的特征,不同的骨面型错牙合畸形通过不同的生长发育机制而影响最终颞下颌关节的空间和形态特征,这些机制对于在临床上判断儿童及青少年颌面部错牙合畸形的病因及指导治疗方案有着重要指导意义。本文对于不同矢状向、垂直向错牙合畸形的颞下颌关节窝、髁突的形态差异,以及髁突在关节窝中的相对位置进行了总结分析发现如下。不同骨型的错牙合畸形和颞下颌关节特征存在联系,其中垂直向对颞下颌关节的影响比矢状向明显。垂直向错牙合畸形对颞下颌关节的影响主要体现在关节窝形态和髁突在关节窝中的位置,高角错牙合畸形的关节窝往往比较低平,髁突处于关节窝前上的位置,低角对应的关节窝比较窄而深,髁突在关节窝中位置比较靠后下。并对可能的机制进行了阐述,为临床医生的综合诊治提供了参考意见。
中图分类号:
王兵, 熊一静, 罗倩, 钟雯怡. 儿童及青少年不同骨面型颞下颌关节的研究进展[J]. 口腔医学, 2024, 44(6): 475-480.
WANG Bing, XIONG Yijing, LUO Qian, ZHONG Wenyi. Research progress of temporomandibular joints of different maxillofacial malocclusions in children and adolescents[J]. Stomatology, 2024, 44(6): 475-480.
[1] | 张豪. 功能牙合学:从颞下颌关节到微笑设计[M]. 沈阳: 辽宁科学技术出版社, 2015. |
[2] | Liu F, Steinkeler A. Epidemiology, diagnosis, and treatment of temporomandibular disorders[J]. Dent Clin North Am, 2013, 57(3):465-479. |
[3] |
Liang WN, Li XH, Gao BZ, et al. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods[J]. Exp Ther Med, 2016, 11(2):481-489.
pmid: 26893634 |
[4] | Tamimi D, Jalali E, Hatcher D. Temporomandibular joint imaging[J]. Radiol Clin North Am, 2018, 56(1):157-175. |
[5] | Paknahad M, Shahidi S. Association between condylar position and vertical skeletal craniofacial morphology: A cone beam computed tomography study[J]. Int Orthod, 2017, 15(4):740-751. |
[6] | Song J, Cheng MJ, Qian YF, et al. Cone-beam CT evaluation of temporomandibular joint in permanent dentition according to Angle’s classification[J]. Oral Radiol, 2020, 36(3):261-266. |
[7] |
Noh KJ, Baik HS, Han SS, et al. Differences in mandibular condyle and glenoid fossa morphology in relation to vertical and sagittal skeletal patterns: A cone-beam computed tomography study[J]. Korean J Orthod, 2021, 51(2):126-134.
doi: 10.4041/kjod.2021.51.2.126 pmid: 33678628 |
[8] | Chae JM, Park JH, Tai K, et al. Evaluation of condyle-fossa relationships in adolescents with various skeletal patterns using cone-beam computed tomography[J]. Angle Orthod, 2020, 90(2):224-232. |
[9] |
Lobo F, Tolentino ES, Iwaki LCV, et al. Imaginology tridimensional study of temporomandibular joint osseous components according to sagittal skeletal relationship, sex, and age[J]. J Craniofac Surg, 2019, 30(5):1462-1465.
doi: 10.1097/SCS.0000000000005467 pmid: 31299744 |
[10] | Radej I, Dargiewicz E, Sawczuk-Siemieniuk M, et al. The role of maxillofacial structure and malocclusion on condylar displacement in maximum intercuspation and centric relation in patients seeking orthodontic treatment-a scoping review[J]. J Clin Med, 2023, 12(2):689. |
[11] |
Arieta-Miranda JM, Silva-Valencia M, Flores-Mir C, et al. Spatial analysis of condyle position according to sagittal skeletal relationship, assessed by cone beam computed tomography[J]. Prog Orthod, 2013, 14: 36.
doi: 10.1186/2196-1042-14-36 pmid: 24325842 |
[12] |
Ma QL, Bimal P, Mei L, et al. Temporomandibular condylar morphology in diverse maxillary-mandibular skeletal patterns: A 3-dimensional cone-beam computed tomography study[J]. J Am Dent Assoc, 2018, 149(7):589-598.
doi: S0002-8177(18)30121-1 pmid: 29655707 |
[13] | Park IY, Kim JH, Park YH. Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern[J]. Korean J Orthod, 2015, 45(2):66-73. |
[14] |
Alomar X, Medrano J, Cabratosa J, et al. Anatomy of the temporomandibular joint[J]. Semin Ultrasound CT MR, 2007, 28(3):170-183.
pmid: 17571700 |
[15] |
Bag AK, Gaddikeri S, Singhal A, et al. Imaging of the temporomandibular joint: An update[J]. World J Radiol, 2014, 6(8):567-582.
doi: 10.4329/wjr.v6.i8.567 pmid: 25170394 |
[16] |
Aiken A, Bouloux G, Hudgins P. MR imaging of the temporomandibular joint[J]. Magn Reson Imaging Clin N Am, 2012, 20(3):397-412.
doi: 10.1016/j.mric.2012.05.002 pmid: 22877948 |
[17] |
Mérida-Velasco JR, Rodríguez-Vázquez JF, Mérida-Velasco JA, et al. Development of the human temporomandibular joint[J]. Anat Rec, 1999, 255(1):20-33.
pmid: 10321990 |
[18] |
Stocum DL, Roberts WE. Part I: Development and physiology of the temporomandibular joint[J]. Curr Osteoporos Rep, 2018, 16(4):360-368.
doi: 10.1007/s11914-018-0447-7 pmid: 29948821 |
[19] | Bender ME, Lipin RB, Goudy SL. Development of the pediatric temporomandibular joint[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(1):1-9. |
[20] | 王艳民, 易新竹. 颞下颌关节的胚胎发育[J]. 国外医学口腔医学分册, 2004, 31(4):285-286,305. |
[21] |
Smartt JM Jr, Low DW, Bartlett SP. The pediatric mandible: I. A primer on growth and development[J]. Plast Reconstr Surg, 2005, 116(1):14e-23e.
pmid: 15988242 |
[22] | 陈扬熙. 口腔正畸学——基础、技术与临床[M]. 北京: 人民卫生出版社, 2012: 73. |
[23] | Buschang PH, Santos-Pinto A. Condylar growth and glenoid fossa displacement during childhood and adolescence[J]. Am J Orthod Dentofac Orthop, 1998, 113(4):437-442. |
[24] |
Dibbets JM, Dijkman GE. The postnatal development of the temporal part of the human temporomandibular joint. A quantitative study on skulls[J]. Ann Anat, 1997, 179(6):569-572.
pmid: 9442266 |
[25] |
Katsavrias EG. Changes in articular eminence inclination during the craniofacial growth period[J]. Angle Orthod, 2002, 72(3):258-264.
pmid: 12071610 |
[26] |
Baqaien MA, Al-Salti FM, Muessig D. Changes in condylar path inclination during maximum protrusion between the ages of 6 and 12 years[J]. J Oral Rehabil, 2007, 34(1):27-33.
pmid: 17207075 |
[27] | Björk A. Variations in the growth pattern of the human mandible: Longitudinal radiographic study by the implant method[J]. J Dent Res, 1963, 42( 1) Pt 2: 400-411. |
[28] | Buschang PH, Santos-Pinto A, Demirjian A. Incremental growth charts for condylar growth between 6 and 16 years of age[J]. Eur J Orthod, 1999, 21(2):167-173. |
[29] | 周境, 刘怡. 不同垂直骨面型骨性Ⅱ类青少年女性颞下颌关节锥形束CT测量分析[J]. 北京大学学报(医学版), 2021, 53(1):109-119. |
[30] | Burke G, Major P, Glover K, et al. Correlations between condylar characteristics and facial morphology in Class Ⅱ preadolescent patients[J]. Am J Orthod Dentofac Orthop, 1998, 114(3):328-336. |
[31] | 韩红娟, 任小华, 吴浩, 等. 两类骨性Ⅱ类患者颞下颌关节间隙比较分析[J]. 西部医学, 2018, 30(2):268-270,275. |
[32] | 李晨. 不同垂直骨面型骨性Ⅱ类成年女性颞下颌关节骨性结构的三维分析[D]. 西安: 第四军医大学, 2016. |
[33] | 马晨博. 青春期骨性Ⅱ类不同垂直骨面型患者颞下颌关节凹和髁突形态特点及对称性研究[D]. 泸州: 西南医科大学, 2007. |
[34] | 田园. 青少年骨性Ⅱ类错牙合不同垂直骨面型患者的髁突形态特点及差异性[J]. 中国药物与临床, 2009, 9(12):1243-1244. |
[35] |
Hasebe A, Yamaguchi T, Nakawaki T, et al. Comparison of condylar size among different anteroposterior and vertical skeletal patterns using cone-beam computed tomography[J]. Angle Orthod, 2019, 89(2):306-311.
doi: 10.2319/032518-229.1 pmid: 30475648 |
[36] |
Katayama K, Yamaguchi T, Sugiura M, et al. Evaluation of mandibular volume using cone-beam computed tomography and correlation with cephalometric values[J]. Angle Orthod, 2014, 84(2):337-342.
doi: 10.2319/012913-87.1 pmid: 23985034 |
[37] |
Paknahad M, Shahidi S, Abbaszade H. Correlation between condylar position and different sagittal skeletal facial types[J]. J Orofac Orthop, 2016, 77(5):350-356.
doi: 10.1007/s00056-016-0039-z pmid: 27357584 |
[38] | 周炼, 张东强, 徐海涛. 青少年骨性Ⅱ类高角错牙合患者颞下颌关节形态的锥形束CT研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(4):235-239. |
[39] |
Nielsen IL. Vertical malocclusions: Etiology, development, diagnosis and some aspects of treatment[J]. Angle Orthod, 1991, 61(4):247-260.
doi: 10.1043/0003-3219(1991)061<0247:VMEDDA>2.0.CO;2 pmid: 1763835 |
[40] | 王欢, 丁寅. 替牙期骨性Ⅲ类不同垂直骨面型患者的髁突形态特点[J]. 华西口腔医学杂志, 2006, 24(6):520-522. |
[41] | 吴琦瑱, 杨智惠, 陈永辉. 替牙期骨性Ⅲ类高角错牙合颞下颌关节CBCT测量分析[J]. 口腔医学, 2017, 37(1):72-74. |
[42] |
邹绍丹, 陈明珠, 尹康. 替牙期骨性Ⅲ类错牙合患者颞下颌关节特征的锥形束CT研究[J]. 口腔医学研究, 2017, 33(1):55-59.
doi: 10.13701/j.cnki.kqyxyj.2017.01.013 |
[43] | 李清, 田惠军, 李洪发. 青少年骨性Ⅱ类高角颞下颌关节窝及其相关解剖结构的CBCT分析[J]. 天津医科大学学报, 2020, 26(4):374-377. |
[44] | 田惠军. 骨性Ⅱ类、Ⅲ类高低角患者颞下颌关节窝及其相关解剖结构的CBCT研究[D]. 天津: 天津医科大学, 2019. |
[45] | Lin M, Xu YF, Wu H, et al. Comparative cone-beam computed tomography evaluation of temporomandibular joint position and morphology in female patients with skeletal class Ⅱ malocclusion[J]. J Int Med Res, 2020, 48(2):300060519892388. |
[46] | 陈巧云. 骨性Ⅲ类上气道和颞下颌关节三维形态特征的CBCT研究[D]. 武汉: 武汉大学, 2018. |
[47] |
Akahane Y, Deguchi T, Hunt NP. Morphology of the temporomandibular joint in skeletal class Ⅲ symmetrical and asymmetrical cases: A study by cephalometric laminography[J]. J Orthod, 2001, 28(2):119-128.
pmid: 11395526 |
[48] |
Al-Hadad SA, ALyafrusee ES, Abdulqader AA, et al. Comprehensive three-dimensional positional and morphological assessment of the temporomandibular joint in skeletal Class Ⅱ patients with mandibular retrognathism in different vertical skeletal patterns[J]. BMC Oral Health, 2022, 22(1):149.
doi: 10.1186/s12903-022-02174-6 pmid: 35484618 |
[49] |
Baccetti T, Antonini A, Franchi L, et al. Glenoid fossa position in different facial types: A cephalometric study[J]. Br J Orthod, 1997, 24(1):55-59.
pmid: 9088604 |
[50] |
Mengi A, Sharma VP, Tandon P, et al. A cephalometric evaluation of the effect of glenoid fossa location on craniofacial morphology[J]. J Oral Biol Craniofac Res, 2016, 6(3):204-212.
pmid: 27761385 |
[51] | Nagaraj K, Roopa J, Sujala G. Evaluation of morphology and position ofglenoid fossa in Class Ⅰ and Class Ⅱmalocclusions : A cephalometric study[J]. Indian J Orthod Dentofac Res, 2016, 2(4):160-165. |
[52] | 江久汇, 纪昌蓉. 安氏Ⅱ类错牙合颅底与颌面部形态关系的探讨[J]. 现代口腔医学杂志, 2001, 15(1):46-48. |
[53] | Kerr WJS, Miller S, Ayme B, et al. Mandibular form and position in 10-year-old boys[J]. Am J Orthod Dentofac Orthop, 1994, 106(2):115-120. |
[54] | 郭向红, 丁寅, 房伟, 等. 不同矢状骨面型颞下颌关节窝位置的测量研究[J]. 临床口腔医学杂志, 2007, 23(5):275-277. |
[55] | Mouakeh M. Cephalometric evaluation of craniofacial pattern of Syrian children with Class Ⅲ malocclusion[J]. Am J OrthodDentofacOrthop, 2001, 119(6):640-649. |
[56] | Innocenti C, Giuntini V, Defraia E, et al. Glenoid fossa position in Class Ⅲ malocclusion associated with mandibular protrusion[J]. Am J Orthod Dentofac Orthop, 2009, 135(4):438-441. |
[57] | Tabassum R, Amjad N, Malik F. Glenoid fossa position in skeletal Class-Ⅱ malocclusion due to retrognathic mandible and skeletalClass-Ⅰ malocclusion in Pakistani population[J]. J Univ Med Dent Coll, 2021, 12(4):52-256. |
[58] | Katsavrias EG, Halazonetis DJ. Condyle and fossa shape in Class Ⅱ and Class Ⅲ skeletal patterns: A morphometric tomographic study[J]. Am J Orthod Dentofac Orthop, 2005, 128(3):337-346. |
[59] | Pullinger AG, Solberg WK, Hollender L, et al. Relationship of mandibular condylar position to dental occlusion factors in an asymptomatic population[J]. Am J Orthod Dentofac Orthop, 1987, 91(3):200-206. |
[60] | Krisjane Z, Urtane I, Krumina G, et al. Three-dimensional evaluation of TMJ parameters in Class Ⅱ and Class Ⅲ patients[J]. Stomatologija, 2009, 11(1):32-36. |
[1] | 李功臣, 扈梓悦, 孙瑶. 初级纤毛在颞下颌关节骨关节炎软骨退化作用中的研究进展[J]. 口腔医学, 2024, 44(6): 448-451. |
[2] | 鲁彩霞, 张思敏, 尼格阿依·艾合麦提, 李雪儿, 陈泽源, 买买提吐逊·吐尔地. 医用臭氧注射疗程对大鼠颞下颌关节骨关节炎及其疼痛作用的影响[J]. 口腔医学, 2024, 44(5): 362-368. |
[3] | 姚成靓, 武秀萍. 青少年儿童腺样体肥大的影像学测量诊断与正畸治疗的相关性[J]. 口腔医学, 2024, 44(4): 307-311. |
[4] | 陶星星, 王继周, 陈佩瑶, 马思维. 不同关节盘状态下的颞下颌关节紊乱病患者发生退行性关节病的风险评估分析[J]. 口腔医学, 2024, 44(4): 245-249. |
[5] | 朱锦怡, 龚衍吉, 郑芳杰, 于世宾, 尹德强, 刘洋. 咬合异常与颞下颌关节紊乱症的关系再思考[J]. 口腔医学, 2024, 44(1): 24-30. |
[6] | 赵宁, 房兵. 正畸治疗与颞下颌关节紊乱病的研究进展[J]. 口腔医学, 2024, 44(1): 20-23. |
[7] | 祝颂松. 成人下颌发育不足的外科矫治[J]. 口腔医学, 2024, 44(1): 16-19. |
[8] | 魏丽丽, 李波, 程勇. 颞下颌关节紊乱病的MRI临床应用进展[J]. 口腔医学, 2024, 44(1): 11-15. |
[9] | 傅开元, 雷杰. 颞下颌关节紊乱病的分类、诊断及治疗进展[J]. 口腔医学, 2024, 44(1): 6-10. |
[10] | 滕颖萱, 冯剑颖. 类风湿关节炎与颞下颌关节紊乱病的相关性研究进展[J]. 口腔医学, 2023, 43(9): 861-864. |
[11] | 周斌, 吴晓勇, 刘名燕. 无托槽隐形功能矫治器治疗青少年骨性Ⅱ类错𬌗的疗效分析[J]. 口腔医学, 2023, 43(7): 643-646. |
[12] | 吴波,刘莉,黄晨嘉,余伊. 艾司氯胺酮与七氟烷对不插管全麻下儿童牙科治疗血流动力学及苏醒质量的影响[J]. 口腔医学, 2023, 43(5): 456-459. |
[13] | 徐文鑫,马宇锋. 声乐生颞下颌关节紊乱病问卷调查及危险因素分析[J]. 口腔医学, 2023, 43(4): 343-346. |
[14] | 王冰洁,王琛,张静露,周薇娜,周燕丽,陈一楠,赵晶. 2种方法治疗急性不可复性关节盘前移位的临床疗效观察[J]. 口腔医学, 2023, 43(4): 334-337. |
[15] | 侯丽媛,刘梦佳,公文,王佳英,辛秉昌,滕娜娜,张进,孙德刚. 270名5岁自闭症儿童龋病及其影响因素调查分析[J]. 口腔医学, 2023, 43(12): 1081-1085. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||