口腔医学 ›› 2024, Vol. 44 ›› Issue (9): 692-698.doi: 10.13591/j.cnki.kqyx.2024.09.009
收稿日期:
2023-11-28
出版日期:
2024-09-28
发布日期:
2024-09-10
通讯作者:
何福明 Tel:(0571)87211819 E-mail:hfm@zju.edu.cn
基金资助:
JIANG Jimin,WANG Yinlin,YANG Hang,HE Fuming()
Received:
2023-11-28
Online:
2024-09-28
Published:
2024-09-10
摘要:
种植体植入后的边缘骨水平维持是保证种植修复具有长期良好临床疗效的重要因素。种植体与基台连接界面设计的多个要素,均对边缘骨水平的维持起到了不可忽视的作用,包括连接界面是否经历多次分离与再连接,是否使用平台转移,连接方式,连接扭矩和连接面材料差异等,它们通过影响着连接界面的微间隙和微动,进而改变微渗漏和机械稳定性的大小,最终影响到种植体长期的临床疗效。该文将对种植体与基台连接界面不同设计要素的研究进展进行详细的综述,为临床诊疗过程中种植修复的基台选择和操作方式提供理论依据。
中图分类号:
江济民, 王胤霖, 杨杭, 何福明. 种植体与基台连接界面设计的研究进展[J]. 口腔医学, 2024, 44(9): 692-698.
JIANG Jimin, WANG Yinlin, YANG Hang, HE Fuming. Progress of research on the design of implant-abutment interface[J]. Stomatology, 2024, 44(9): 692-698.
[1] | Geraets W, Zhang L, Liu Y, et al. Annual bone loss and success rates of dental implants based on radiographic measurements[J]. Dentomaxillofac Radiol, 2014, 43(7): 20140007. |
[2] | Fabbri G, Staas T, Linkevicius T, et al. Clinical performance of a novel two-piece abutment concept: Results from a prospective study with a 1-year follow-up[J]. J Clin Med, 2021, 10(8): 1594. |
[3] |
Anitua E, Alkhraisat MH. Fifteen-year follow-up of short dental implants in the completely edentulous jaw: Submerged versus nonsubmerged healing[J]. Implant Dent, 2019, 28(6): 551-555.
doi: 10.1097/ID.0000000000000935 pmid: 31765332 |
[4] |
Liu Y, Wang JW. Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck[J]. Arch Oral Biol, 2017, 83: 153-160.
doi: S0003-9969(17)30243-1 pmid: 28780384 |
[5] | Lauritano D, Moreo G, Lucchese A, et al. The impact of implant-abutment connection on clinical outcomes and microbial colonization: A narrative review[J]. Materials, 2020, 13(5): 1131. |
[6] | Carinci F, Lauritano D, Cura F, et al. Prevention of bacterial leakage at implant-abutment connection level: An in vitro study of the efficacy of three different implant systems[J]. J Biol Regul Homeost Agents, 2016, 30(2Suppl 1): 69-73. |
[7] | Canullo L, Penarrocha-Oltra D, Soldini C, et al. Microbiological assessment of the implant-abutment interface in different connections: Cross-sectional study after 5 years of functional loading[J]. Clin Oral Implants Res, 2015, 26(4): 426-434. |
[8] |
do Nascimento C, Pita MS, de Souza Santos E, et al. Microbiome of titanium and zirconia dental implants abutments[J]. Dent Mater, 2016, 32(1): 93-101.
doi: 10.1016/j.dental.2015.10.014 pmid: 26616687 |
[9] | Koutouzis T, Gadalla H, Lundgren T. Bacterial colonization of the implant-abutment interface(IAI)of dental implants with a sloped marginal design: An in-vitro study[J]. Clin Implant Dent Relat Res, 2016, 18(1): 161-167. |
[10] |
Sasada Y, Cochran DL. Implant-abutment connections: A review of biologic consequences and peri-implantitis implications[J]. Int J Oral Maxillofac Implants, 2017, 32(6): 1296-1307.
doi: 10.11607/jomi.5732 pmid: 29140374 |
[11] | Harder S, Quabius ES, Ossenkop L, et al. Assessment of lipopolysaccharide microleakage at conical implant-abutment connections[J]. Clin Oral Investig, 2012, 16(5): 1377-1384. |
[12] |
Karl M, Taylor TD. Parameters determining micromotion at the implant-abutment interface[J]. Int J Oral Maxillofac Implants, 2014, 29(6): 1338-1347.
doi: 10.11607/jomi.3762 pmid: 25397796 |
[13] | Passos SP, Gressler May L, Faria R, et al. Implant-abutment gap versus microbial colonization: Clinical significance based on a literature review[J]. J Biomed Mater Res B Appl Biomater, 2013, 101(7): 1321-1328. |
[14] | Koutouzis T, Mesia R, Calderon N, et al. The effect of dynamic loading on bacterial colonization of the dental implant fixture-abutment interface: An in vitro study[J]. J Oral Implantol, 2014, 40(4): 432-437. |
[15] |
Sahin C, Ayyildiz S. Correlation between microleakage and screw loosening at implant-abutment connection[J]. J Adv Prosthodont, 2014, 6(1): 35-38.
doi: 10.4047/jap.2014.6.1.35 pmid: 24605204 |
[16] |
Blum K, Wiest W, Fella C, et al. Fatigue induced changes in conical implant-abutment connections[J]. Dent Mater, 2015, 31(11): 1415-1426.
doi: 10.1016/j.dental.2015.09.004 pmid: 26429505 |
[17] | Lambrechts T, Doornewaard R, De Bruyckere T, et al. A multicenter cohort study on the association of the one-abutment one-time concept with marginal bone loss around bone level implants[J]. Clin Oral Implants Res, 2021, 32(2): 192-202. |
[18] | Canullo L, Fedele GR, Iannello G, et al. Platform switching and marginal bone-level alterations: The results of a randomized-controlled trial[J]. Clin Oral Implants Res, 2010, 21(1): 115-121. |
[19] | Ranieri R, Ferreira A, Souza E, et al. The bacterial sealing capacity of morse taper implant-abutment systems in vitro[J]. J Periodontol, 2015, 86(5): 696-702. |
[20] | Honório Tonin BS, He YT, Ye N, et al. Effects of tightening torque on screw stress and formation of implant-abutment microgaps: A finite element analysis[J]. J Prosthet Dent, 2022, 127(6): 882-889. |
[21] | de Holanda Cavalcanti Pereira AK, et al. Cavalcanti do Egito Vasconcelos B, Mechanical behavior of titanium and zirconia abutments at the implant-abutment interface: A systematic review[J]. J Prosthet Dent, 2022: S0022 -S3913(22)00050-6. |
[22] | Rodríguez X, Vela X, Méndez V, et al. The effect of abutment dis/reconnections on peri-implant bone resorption: A radiologic study of platform-switched and non-platform-switched implants placed in animals[J]. Clin Oral Implants Res, 2013, 24(3): 305-311. |
[23] |
Norton MR, Åström M. The influence of implant surface on maintenance of marginal bone levels for three premium implant brands: A systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2020, 35(6): 1099-1111.
doi: 10.11607/jomi.8393 pmid: 33270049 |
[24] | Molina A, Sanz-Sánchez I, Martín C, et al. The effect of one-time abutment placement on interproximal bone levels and peri-implant soft tissues: A prospective randomized clinical trial[J]. Clin Oral Implants Res, 2017, 28(4): 443-452. |
[25] | Ríos-Santos JV, Tello-González G, Lázaro-Calvo P, et al. One abutment one time: A multicenter, prospective, controlled, randomized study[J]. Int J Environ Res Public Health, 2020, 17(24): 9453. |
[26] | Linkevicius T, Linkevicius R, Gineviciute E, et al. The influence of new immediate tissue level abutment on crestal bone stability of subcrestally placed implants: A 1-year randomized controlled clinical trial[J]. Clin Implant Dent Relat Res, 2021, 23(2): 259-269. |
[27] | Moreira F, Rocha S, Caramelo F, et al. One-abutment one-time effect on peri-implant marginal bone: A prospective, controlled, randomized, double-blind study[J]. Materials, 2021, 14(15): 4179. |
[28] | Praça LFG, Teixeira RC, Rego RO. Influence of abutment disconnection on peri-implant marginal bone loss: A randomized clinical trial[J]. Clin Oral Implants Res, 2020, 31(4): 341-351. |
[29] | Windael S, Collaert B, De Buyser S, et al. Early peri-implant bone loss as a predictor for peri-implantitis: A 10-year prospective cohort study[J]. Clin Implant Dent Relat Res, 2021, 23(3): 298-308. |
[30] |
Broggini N, McManus LM, Hermann JS, et al. Peri-implant inflammation defined by the implant-abutment interface[J]. J Dent Res, 2006, 85(5): 473-478.
doi: 10.1177/154405910608500515 pmid: 16632764 |
[31] | Lazzara RJ, Porter SS. Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels[J]. Int J Periodontics Restorative Dent, 2006, 26(1): 9-17. |
[32] | Schwarz F, Alcoforado G, Nelson K, et al. Impact of implant-abutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report[J]. Clin Oral Implants Res, 2014, 25(11): 1301-1303. |
[33] | Cheng GL, Leblebicioglu B, Li JR, et al. Soft tissue healing around platform-switching and platform-matching single implants: A randomized clinical trial[J]. J Periodontol, 2020, 91(12): 1609-1620. |
[34] | Maeda Y, Miura J, Taki I, et al. Biomechanical analysis on platform switching: Is there any biomechanical rationale?[J]. Clin Oral Implants Res, 2007, 18(5): 581-584. |
[35] | Abou-Ayash S, Schimmel M, Kraus D, et al. Platform switching in two-implant bar-retained mandibular overdentures: 1-year results from a split-mouth randomized controlled clinical trial[J]. Clin Oral Implants Res, 2020, 31(10): 968-979. |
[36] |
Messias A, Rocha S, Wagner W, et al. Peri-implant marginal bone loss reduction with platform-switching components: 5-Year post-loading results of an equivalence randomized clinical trial[J]. J Clin Periodontol, 2019, 46(6): 678-687.
doi: 10.1111/jcpe.13119 pmid: 31025365 |
[37] | Pan YH, Lin HK, Lin JCY, et al. Evaluation of the peri-implant bone level around platform-switched dental implants: A retrospective 3-year radiographic study[J]. Int J Environ Res Public Health, 2019, 16(14): 2570. |
[38] | Strietzel FP, Neumann K, Hertel M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis[J]. Clin Oral Implants Res, 2015, 26(3): 342-358. |
[39] |
Herekar M, Sethi M, Mulani S, et al. Influence of platform switching on periimplant bone loss: A systematic review and meta-analysis[J]. Implant Dent, 2014, 23(4): 439-450.
doi: 10.1097/ID.0000000000000080 pmid: 24819807 |
[40] |
Chrcanovic BR, Albrektsson T, Wennerberg A. Platform switch and dental implants: A meta-analysis[J]. J Dent, 2015, 43(6): 629-646.
doi: 10.1016/j.jdent.2014.12.013 pmid: 25559693 |
[41] | Enkling N, Jöhren P, Katsoulis J, et al. Influence of platform switching on bone-level alterations: A three-year randomized clinical trial[J]. J Dent Res, 2013, 92(12 Suppl): 139S-145S. |
[42] |
Atieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: A systematic review and meta-analysis[J]. J Periodontol, 2010, 81(10): 1350-1366.
doi: 10.1902/jop.2010.100232 pmid: 20575657 |
[43] | Gracis S, Michalakis K, Vigolo P, et al. Internal vs. external connections for abutments/reconstructions: A systematic review[J]. Clin Oral Implants Res, 2012, 23(Suppl 6): 202-216. |
[44] |
Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scand J Plast Reconstr Surg Suppl, 1977, 16: 1-132.
pmid: 356184 |
[45] | Vinhas AS, Aroso C, Salazar F, et al. Review of the mechanical behavior of different implant-abutment connections[J]. Int J Environ Res Public Health, 2020, 17(22): 8685. |
[46] | 汤初凉, 赵世凯, 黄翠. 莫氏锥度连接在口腔种植中的应用特点及研究进展[J]. 中华口腔医学杂志, 2017, 52(1): 59-62. |
[47] |
Álvarez-Arenal Á, Segura-Mori L, Gonzalez-Gonzalez I, et al. Stress distribution in the transitional peri-implant bone in a single implant-supported prosthesis with platform-switching under different angulated loads[J]. Odontology, 2017, 105(1): 68-75.
doi: 10.1007/s10266-016-0237-6 pmid: 26943357 |
[48] |
Vetromilla BM, Brondani LP, Pereira-Cenci T, et al. Influence of different implant-abutment connection designs on the mechanical and biological behavior of single-tooth implants in the maxillary esthetic zone: A systematic review[J]. J Prosthet Dent, 2019, 121(3): 398-403. e3.
doi: S0022-3913(18)30409-8 pmid: 30477924 |
[49] |
Hernigou P, Queinnec S, Flouzat Lachaniette CH. One hundred and fifty years of history of the Morse taper: From Stephen A. Morse in 1864 to complications related to modularity in hip arthroplasty[J]. Int Orthop, 2013, 37(10): 2081-2088.
doi: 10.1007/s00264-013-1927-0 pmid: 23715954 |
[50] | Dibart S, Warbington M, Su MF, et al. In vitro evaluation of the implant-abutment bacterial seal: The locking taper system[J]. Int J Oral Maxillofac Implants, 2005, 20(5): 732-737. |
[51] | Tsuruta K, Ayukawa Y, Matsuzaki T, et al. The influence of implant-abutment connection on the screw loosening and microleakage[J]. Int J Implant Dent, 2018, 4(1): 11. |
[52] | Pardal-Peláez B, Montero J. Preload loss of abutment screws after dynamic fatigue in single implant-supported restorations. A systematic review[J]. J Clin Exp Dent, 2017, 9(11): e1355-e1361. |
[53] | Vélez J, Peláez J, López-Suárez C, et al. Influence of implant connection, abutment design and screw insertion torque on implant-abutment misfit[J]. J Clin Med, 2020, 9(8): 2365. |
[54] | Matsuoka T, Nakano T, Yamaguchi S, et al. Effects of implant-abutment connection type and inter-implant distance on inter-implant bone stress and microgap: Three-dimensional finite element analysis[J]. Materials, 2021, 14(9): 2421. |
[55] | Schmitt CM, Nogueira-Filho G, Tenenbaum HC, et al. Performance of conical abutment(Morse Taper)connection implants: A systematic review[J]. J Biomed Mater Res A, 2014, 102(2): 552-574. |
[56] | Larrucea C, Conrado A, Olivares D, et al. Bacterial microleakage at the abutment-implant interface, in vitro study[J]. Clin Implant Dent Relat Res, 2018, 20(3): 360-367. |
[57] |
Baggi L, Di Girolamo M, Mirisola C, et al. Microbiological evaluation of bacterial and mycotic seal in implant systems with different implant-abutment interfaces and closing torque values[J]. Implant Dent, 2013, 22(4): 344-350.
doi: 10.1097/ID.0b013e3182943062 pmid: 23782848 |
[58] | Larrucea Verdugo C, Jaramillo Núñez G, Acevedo Avila A, et al. Microleakage of the prosthetic abutment/implant interface with internal and external connection: in vitro study[J]. Clin Oral Implants Res, 2014, 25(9): 1078-1083. |
[59] | Gehrke SA, Shibli JA, Aramburú Junior JS, et al. Effects of different torque levels on the implant-abutment interface in a conical internal connection[J]. Braz Oral Res, 2016, 30: S1806-S83242016000100233. |
[60] |
Huang YQ, Wang JW. Mechanism of and factors associated with the loosening of the implant abutment screw: A review[J]. J Esthet Restor Dent, 2019, 31(4): 338-345.
doi: 10.1111/jerd.12494 pmid: 31150572 |
[61] |
Bozkaya D, Müftü S. Mechanics of the tapered interference fit in dental implants[J]. J Biomech, 2003, 36(11): 1649-1658.
pmid: 14522206 |
[62] | Ferreira MB, Delben JA, Barão VAR, et al. Evaluation of torque maintenance of abutment and cylinder screws with Morse taper implants[J]. J Craniofac Surg, 2012, 23(6): e631-e634. |
[63] |
Rupp F, Liang L, Geis-Gerstorfer J, et al. Surface characteristics of dental implants: A review[J]. Dent Mater, 2018, 34(1): 40-57.
doi: S0109-5641(17)30744-3 pmid: 29029850 |
[64] | Mochales C, Frank S, Zehbe R, et al. Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD[J]. J Phys Chem B, 2013, 117(6): 1694-1701. |
[65] |
Stimmelmayr M, Edelhoff D, Güth JF, et al. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: A comparative in vitro study[J]. Dent Mater, 2012, 28(12): 1215-1220.
doi: 10.1016/j.dental.2012.08.008 pmid: 23021964 |
[66] |
Saidin S, Abdul Kadir MR, Sulaiman E, et al. Effects of different implant-abutment connections on micromotion and stress distribution: Prediction of microgap formation[J]. J Dent, 2012, 40(6): 467-474.
doi: 10.1016/j.jdent.2012.02.009 pmid: 22366313 |
[67] | Gil FJ, Herrero-Climent M, Lázaro P, et al. Implant-abutment connections: Influence of the design on the microgap and their fatigue and fracture behavior of dental implants[J]. J Mater Sci Mater Med, 2014, 25(7): 1825-1830. |
[68] | Cárdenas R, Sánchez D, Euán R, et al. Effect of fatigue loading and failure mode of different ceramic implant abutments[J]. J Prosthet Dent, 2022, 127(6): 875-881. |
[69] | Smith NA, Turkyilmaz I. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values[J]. J Prosthet Dent, 2014, 112(3): 561-567. |
[70] |
Barbosa SA Jr, Bacchi A, Barão VAR, et al. Implant volume loss, misfit, screw loosening, and stress in custom titanium and zirconia abutments[J]. Braz Dent J, 2020, 31(4): 374-379.
doi: S0103-64402020000400374 pmid: 32901712 |
[71] |
Baldassarri M, Hjerppe J, Romeo D, et al. Marginal accuracy of three implant-ceramic abutment configurations[J]. Int J Oral Maxillofac Implants, 2012, 27(3): 537-543.
pmid: 22616046 |
[72] | Sanz-Sánchez I, Sanz-Martín I, Carrillo de Albornoz A, et al. Biological effect of the abutment material on the stability of peri-implant marginal bone levels: A systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(Suppl 18): 124-144. |
[73] |
Kelly JR, Rungruanganunt P. Fatigue behavior of computer-aided design/computer-assisted manufacture ceramic abutments as a function of design and ceramics processing[J]. Int J Oral Maxillofac Implants, 2016, 31(3): 601-609.
doi: 10.11607/jomi.4698 pmid: 27183069 |
[74] | Nilsson A, Johansson LÅ, Lindh C, et al. One-piece internal zirconia abutments for single-tooth restorations on narrow and regular diameter implants: A 5-year prospective follow-up study[J]. Clin Implant Dent Relat Res, 2017, 19(5): 916-925. |
[1] | 杜巧琳 顾新华. 牙种植体形态结构设计的研究进展[J]. , 2021, 41(5): 475-480. |
[2] | 盛敏 章登辉 高佳雨 周益 王慧明. 平台转换技术的特点和研究现状[J]. , 2020, 40(7): 654-659. |
[3] | 王凌 柳兆刚 田宏伟 唐振华 周宇 陈旭兵. CAD/CAM在腓骨瓣-种植体功能性修复下颌骨缺损的临床应用[J]. , 2020, 40(4): 324-329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||