口腔医学 ›› 2023, Vol. 43 ›› Issue (3): 282-288.doi: 10.13591/j.cnki.kqyx.2023.03.018
• 综述 • 上一篇
姚敏慧1,吴锦涛2,周愉3,褚凤清3,蒋葭葭3,陈玥3,周莉丽2(),李泽汉2(
)
修回日期:
2022-06-18
出版日期:
2023-03-28
发布日期:
2023-04-06
通讯作者:
周莉丽,E-mail:基金资助:
YAO Minhui1,WU Jintao2,ZHOU Yu3,CHU Fengqing3,JIANG Jiajia3,CHEN Yue3,ZHOU Lili2(),LI Zehan2(
)
Revised:
2022-06-18
Online:
2023-03-28
Published:
2023-04-06
摘要:
随着分子生物学、生物材料学、组织工程学等学科的不断发展,牙髓根尖周病的再生性治疗面临新的机遇。目前,大量关于牙髓再生的研究表明:细胞因子在促进牙髓干细胞迁移、增殖和成骨向分化等方面发挥重要作用。该文将对近期作为热点研究的几类牙髓再生的相关细胞因子进行综述,分析其在牙髓再生中的作用及调节机制。
中图分类号:
姚敏慧, 吴锦涛, 周愉, 褚凤清, 蒋葭葭, 陈玥, 周莉丽, 李泽汉. 牙髓再生相关细胞因子研究进展[J]. 口腔医学, 2023, 43(3): 282-288.
YAO Minhui, WU Jintao, ZHOU Yu, CHU Fengqing, JIANG Jiajia, CHEN Yue, ZHOU Lili, LI Zehan. Advances in the study on cytokines related to dental pulp regeneration[J]. Stomatology, 2023, 43(3): 282-288.
[1] | 陈婷, 李心竹, 徐稳安. 外泌体和细胞因子促进牙髓血管生成的作用与调控机制[J]. 中国组织工程研究, 2020, 24(14):2263-2270. |
[2] |
Xiao M, Yao B, Zhang BD, et al. Stromal-derived Factor-1α signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways[J]. Exp Cell Res, 2019, 381(1):39-49.
doi: S0014-4827(19)30227-7 pmid: 31071315 |
[3] |
Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis[J]. Leukemia, 2006, 20(11):1915-1924.
doi: 10.1038/sj.leu.2404357 pmid: 16900209 |
[4] | 蓝彬园, 林熹, 陈文瑨, 等. 脂多糖刺激人牙髓干细胞分泌的外泌体联合基质细胞衍生因子-1对牙髓再生的影响[J]. 中华口腔医学杂志, 2022, 57(1):60-67. |
[5] |
Xiao M, Qiu J, Kuang R, et al. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system[J]. Cell Tissue Res, 2019, 378(2):207-220.
doi: 10.1007/s00441-019-03045-3 pmid: 31152245 |
[6] |
Pagella P, Nombela-Arrieta C, Mitsiadis TA. Distinct expression patterns of Cxcl12 in mesenchymal stem cell niches of intact and injured rodent teeth[J]. Int J Mol Sci, 2021, 22(6):3024.
doi: 10.3390/ijms22063024 |
[7] |
Carmeliet P. Mechanisms of angiogenesis andarteriogenesis[J]. Nat Med, 2000, 6(4):389-395.
doi: 10.1038/74651 pmid: 10742145 |
[8] |
Bae YK, Kim GH, Lee JC, et al. The significance of SDF-1α-CXCR4 axis in in vivo angiogenic ability of human periodontal ligament stem cells[J]. Mol Cells, 2017, 40(6):386-392.
doi: 10.14348/molcells.2017.0004 |
[9] |
Wang DR, Lyu Y, Yang Y, et al. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis[J]. Acta Biomater, 2022, 140: 610-624.
doi: 10.1016/j.actbio.2021.11.039 |
[10] |
Zhu LF, Dissanayaka WL, Zhang CF. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration[J]. Clin Oral Investig, 2019, 23(5):2497-2509.
doi: 10.1007/s00784-018-2699-0 |
[11] |
Choi JH, Nguyen MP, Lee DJ, et al. Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice[J]. Mol Cells, 2014, 37(6):487-496.
doi: 10.14348/molcells.2014.0119 |
[12] |
Janjić K, Lilaj B, Moritz A, et al. Formation of spheroids by dental pulp cells in the presence of hypoxia and hypoxia mimetic agents[J]. Int Endod J, 2018, 51(Suppl 2):e146-e156.
doi: 10.1111/iej.12806 |
[13] |
Liu SC, Alomran R, Chernikova SB, et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats[J]. Neuro-oncology, 2014, 16(1):21-28.
doi: 10.1093/neuonc/not149 |
[14] |
Citro A, Pellegrini S, Dugnani E, et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse[J]. Am J Transplant, 2019, 19(11):3131-3138.
doi: 10.1111/ajt.15518 pmid: 31267721 |
[15] |
Steurer M, Montillo M, Scarfò L, et al. Olaptesed pegol (NOX-A12) with bendamustine and rituximab: A phase IIa study in patients with relapsed/refractory chronic lymphocytic leukemia[J]. Haematologica, 2019, 104(10):2053-2060.
doi: 10.3324/haematol.2018.205930 pmid: 31097627 |
[16] |
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12[J]. Cytokine Growth Factor Rev, 2018, 44: 51-68.
doi: 10.1016/j.cytogfr.2018.10.004 |
[17] |
Liu ZY, Song ZW, Guo SW, et al. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model[J]. CNS Neurosci Ther, 2019, 25(9):922-936.
doi: 10.1111/cns.v25.9 |
[18] |
Liu LY, Leng S, Yue JL, et al. EDTA enhances stromal cell-derived factor 1α-induced migration of dental pulp cells by up-regulating chemokine receptor 4 expression[J]. J Endod, 2019, 45(5):599-605.e1.
doi: S0099-2399(19)30034-2 pmid: 30926162 |
[19] |
Liu LY, Leng S, Tang LQ, et al. EDTA promotes the mineralization of dental pulp in vitro and in vivo[J]. J Endod, 2021, 47(3):458-465.
doi: 10.1016/j.joen.2020.12.003 |
[20] | 吴周玲, 白什尔, 班桂飞, 等. 基质细胞衍生因子1与其G蛋白偶联受体(CXCR4)信号轴相关生物学特性[J]. 中国组织工程研究, 2019, 23(9):1434-1440. |
[21] |
Pervin B, Aydın G, Visser T, et al. CXCR4 expression by mesenchymal stromal cells is lost after use of enzymatic dissociation agents, but preserved by use of non-enzymatic methods[J]. Int J Hematol, 2021, 113(1):5-9.
doi: 10.1007/s12185-020-03043-0 pmid: 33389659 |
[22] | 魏中武, 黄谢山, 陈灼庚. 浓缩生长因子在口腔临床中的应用及研究进展[J]. 国际口腔医学杂志, 2020, 47(2):235-243. |
[23] | 王瑜, 王伟, 顾新华. 浓缩生长因子在种植软硬组织增量方面的研究及应用[J]. 国际口腔医学杂志, 2019, 46(2):218-222. |
[24] |
Xu FF, Qiao L, Zhao YM, et al. The potential application of concentrated growth factor in pulp regeneration: An in vitro and in vivo study[J]. Stem Cell Res Ther, 2019, 10(1):134.
doi: 10.1186/s13287-019-1247-4 |
[25] |
Aghamohamadi Z, Kadkhodazadeh M, Torshabi M, et al. A compound of concentrated growth factor and periodontal ligament stem cell-derived conditioned medium[J]. Tissue Cell, 2020, 65: 101373.
doi: 10.1016/j.tice.2020.101373 |
[26] |
Li ZX, Liu L, Wang L, et al. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration[J]. Stem Cell Res Ther, 2021, 12(1):357.
doi: 10.1186/s13287-021-02446-y pmid: 34147130 |
[27] | Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2):455-467. |
[28] | 李祥伟, 孙宏晨, 刘晓华. 载血管内皮细胞生长因子微球促进牙髓再生和血管形成的实验研究[J]. 中华口腔医学杂志, 2018, 53(1):42-48. |
[29] | Tsutsui TW. Dental pulp stem cells: Advances to applications[J]. Stem Cells Cloning, 2020, 13: 33-42. |
[30] |
Zeng Q, Nguyen S, Zhang HM, et al. Release of growth factors into root canal by irrigations in regenerative endodontics[J]. J Endod, 2016, 42(12):1760-1766.
doi: S0099-2399(16)30494-0 pmid: 27871480 |
[31] |
Chang YC, Chang MC, Chen YJ, et al. Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells[J]. J Endod, 2017, 43(6):936-942.
doi: 10.1016/j.joen.2017.01.024 |
[32] | Luo LH, Albashari AA, Wang XY, et al. Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair[J]. Stem Cells Int, 2018, 2018: 2398521. |
[33] | Li XJ, Yang HX, Zhang ZJ, et al. Concentrated growth factor exudate enhances the proliferation of human periodontal ligament cells in the presence of TNF-α[J]. Mol Med Rep, 2019, 19(2):943-950. |
[34] |
Li X, Pontén A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor[J]. Nat Cell Biol, 2000, 2(5):302-309.
pmid: 10806482 |
[35] |
Mead B, Logan A, Berry M, et al. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells[J]. PLoS One, 2014, 9(10):e109305.
doi: 10.1371/journal.pone.0109305 |
[36] |
Zhang ML, Jiang F, Zhang XC, et al. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration[J]. Stem Cells Transl Med, 2017, 6(12):2126-2134.
doi: 10.1002/sctm.17-0033 |
[37] | Tabatabaei FS, Torshabi M. Effects ofnon-collagenous proteins, TGF-β1, and PDGF-BB on viability and proliferation of dental pulp stem cells[J]. J Oral Maxillofac Res, 2016, 7(1):e4. |
[38] | Ng F, Boucher S, Koh S, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs):Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages[J]. Blood, 2008, 112(2):295-307. |
[39] |
Jiang LM, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells[J]. J Dent, 2020, 103: 103501.
doi: 10.1016/j.jdent.2020.103501 |
[40] |
Tian SB, Wang J, Dong FS, et al. Concentrated growth factor promotes dental pulp cells proliferation and mineralization and facilitates recovery of dental pulp tissue[J]. Med Sci Monit, 2019, 25: 10016-10028.
doi: 10.12659/MSM.919316 |
[41] |
Tóth F, Gáll JM, Tözsér J, et al. Effect of inducible bone morphogenetic protein 2 expression on the osteogenic differentiation of dental pulp stem cells in vitro[J]. Bone, 2020, 132: 115214.
doi: 10.1016/j.bone.2019.115214 |
[42] |
Tan Q, Cao YY, Zheng XR, et al. BMP4-regulated human dental pulp stromal cells promote pulp-like tissue regeneration in a decellularized dental pulp matrix scaffold[J]. Odontology, 2021, 109(4):895-903.
doi: 10.1007/s10266-021-00620-5 pmid: 34086131 |
[43] |
Tabatabaei F, Aghamohammadi Z, Tayebi L. In vitro and in vivo effects of concentrated growth factor on cells and tissues[J]. J Biomed Mater Res A, 2020, 108(6):1338-1350.
doi: 10.1002/jbm.a.36906 pmid: 32090458 |
[44] | Liang SD, Ma LQ, Gao ZY, et al. Granulocyte colony-stimulating factor improves neurological function and angiogenesis in intracerebral hemorrhage rats[J]. Eur Rev Med Pharmacol Sci, 2018, 22(7):2005-2014. |
[45] |
Pourtaji A, Jahani V, Moallem SMH, et al. Application of G-CSF in congestive heart failure treatment[J]. Curr Cardiol Rev, 2019, 15(2):83-90.
doi: 10.2174/1573403X14666181031115118 pmid: 30378501 |
[46] |
Nakashima M, Iohara K, Zayed M. Pulp regeneration: Current approaches, challenges, and novel rejuvenating strategies for an aging population[J]. J Endod, 2020, 46(9S):S135-S142.
doi: 10.1016/j.joen.2020.06.028 pmid: 32950185 |
[47] |
Iohara K, Murakami M, Takeuchi N, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration[J]. Stem Cells Transl Med, 2013, 2(10):818.
doi: 10.5966/sctm.2012-0132erratum |
[48] |
Ruangsawasdi N, Zehnder M, Patcas R, et al. Effects of stem cell factor on cell homing during functional pulp regeneration in human immature teeth[J]. Tissue Eng Part A, 2017, 23(3/4):115-123.
doi: 10.1089/ten.tea.2016.0227 |
[49] |
Koutsoumparis A, Vassili A, Bakopoulou A, et al. Erythropoietin (rhEPOa) promotes endothelial transdifferentiation of stem cells of the apical papilla (SCAP)[J]. Arch Oral Biol, 2018, 96: 96-103.
doi: S0003-9969(18)30281-4 pmid: 30205239 |
[50] |
An L, Shen S, Wang LY, et al. TNF-alpha increases angiogenic potential in a co-culture system of dental pulp cells and endothelial cells[J]. Braz Oral Res, 2019, 33: e059.
doi: 10.1590/1807-3107bor-2019.vol33.0059 pmid: 31664357 |
[1] | 杜军, 万哲. 植入位点及轴向对不同牙槽窝形态上中切牙即刻种植即刻负重应力影响的三维有限元分析[J]. 口腔医学, 2023, 43(3): 222-227. |
[2] | 樊永杰,寇雅婷. 无托槽隐形矫治拔牙病例的后牙不同轴倾度对牙齿三维力学影响[J]. 口腔医学, 2023, 43(2): 104-109. |
[3] | 陈艺菲,张辰玥,张璟岚,张滨婧,戎鑫,胡芝爱. 三维打印血管的研究进展[J]. 口腔医学, 2023, 43(1): 82-87. |
[4] | 马廷林, 艾力麦尔旦·艾尼瓦尔, 汝悦, 图玛热·阿里木, 地力努尔·克然木, 苏庆玲, 古丽, 王玲. 浓缩生长因子联合盐酸米诺环素软膏治疗干槽症疗效研究[J]. 口腔医学, 2022, 42(7): 622-626. |
[5] | 姚丽红, 徐婉秋, 许晓航, 薛冰, 席花蕾, 王秀梅. 神经调节素-1在神经损伤修复中的作用机制及研究现状[J]. 口腔医学, 2022, 42(6): 567-570. |
[6] | 孙吉宇, 张曦丹, 朱卓立, 陈晨峰, 杨阳, 甘雪琦. 浓缩生长因子在美学区种植的应用及机制研究进展[J]. 口腔医学, 2022, 42(12): 1134-1139. |
[7] | 于晖, 王浩辰, 黄天宇, 满毅, 向琳. 活性氧与Hippo通路交互作用介导细胞行为的研究进展[J]. 口腔医学, 2022, 42(11): 1031-1035. |
[8] | 张雪, 徐兆莹, 蒋鹏飞, 潘爽. 脐静脉内皮细胞外泌体和内皮祖细胞外泌体对hDPSCs增殖及迁移能力的比较研究[J]. 口腔医学, 2022, 42(11): 979-983. |
[9] | 顾婷立, 刘亚华, 钱靓, 章茜. LncRNA MALAT1调节miR-383-5p/SOCS3轴对人牙周膜干细胞的影响[J]. 口腔医学, 2022, 42(11): 966-973. |
[10] | 李娜 池明翰 李祥伟. HIV感染与牙周疾病相关性的研究进展[J]. , 2021, 41(9): 861-864. |
[11] | 潘菁 曹子蔚 管贇 蒋备战. 可注射型富血小板纤维蛋白对人根尖牙乳头干细胞生物学行为的影响[J]. , 2021, 41(7): 594-598. |
[12] | 于晶晶 孟颖 叶金海. 唾液腺腺样囊性癌中外泌体功能的研究进展[J]. , 2021, 41(7): 664-668. |
[13] | 俞舟 黄廷贲 王慧明 杨国利. 种植体掺离子表面改性技术及其促进骨结合的研究进展[J]. , 2021, 41(2): 170-176. |
[14] | 刘雪威 林晓萍. 牙周炎与癌症相关性研究进展[J]. , 2021, 41(12): 1121-1124. |
[15] | 赵萌 江莉婷 高益鸣. 微小RNA对骨衰老调控的相关研究进展[J]. , 2020, 40(6): 554-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||