口腔医学 ›› 2025, Vol. 45 ›› Issue (10): 742-748.doi: 10.13591/j.cnki.kqyx.2025.10.004

• 基础与临床研究 • 上一篇    下一篇

无托槽隐形矫治中微种植体支抗高度对上颌前牙内收力学影响的三维有限元分析

张驰1,2,3, 张乐恒4, 徐悠然4, 翟冯阳4, 张佩瑜4, 朴俐颖1, 韩旻轩5(), 娄姝1,2,3()   

  1. 1 南京医科大学附属口腔医院正畸科,江苏南京(210029)
    2 口腔疾病研究与防治国家级重点实验室培育建设点,江苏南京(210029)
    3 江苏省口腔转化医学工程研究中心,江苏南京(210029)
    4 南京医科大学口腔医学院,江苏南京(210029)
    5 苏州市立医院口腔科,南京医科大学附属苏州医院,南京医科大学姑苏学院,江苏苏州(215008)
  • 收稿日期:2025-01-05 出版日期:2025-10-28 发布日期:2025-10-23
  • 通讯作者: 韩旻轩 E-mail:178031043@qq.com;娄 姝 E-mail:loushu@njmu.edu.cn
  • 基金资助:
    时代天使“连创 A+”计划科研项目(EARD20221206053);江苏省科教能力提升工程——江苏省研究型医院(YJXYYJSDW4);江苏省医学创新中心(CXZX202227)

Three-dimensional finite element analysis of the mechanical effects of different heights of micro-implant anchorage on maxillary anterior teeth retraction in clear aligner treatment

ZHANG Chi1,2,3, ZHANG Leheng4, XU Youran4, ZHAI Fengyang4, ZHANG Peiyu4, PIAO Liying1, HAN Minxuan5(), LOU Shu1,2,3()   

  1. Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2025-01-05 Online:2025-10-28 Published:2025-10-23

摘要:

目的 本研究通过建立三维有限元模型,探讨无托槽隐形矫治器结合不同高度的尖牙长臂牵引钩和微种植体支抗在内收上颌前牙时的相关力学效应,分析牙周膜应力分布及上前牙移动趋势,为优化治疗方案提供科学依据。方法 基于患者CBCT扫描数据,使用Mimics、Geomagic Studio、Hypermesh等软件,构建了包含不同高度尖牙牵引钩(4、6、8、10 mm)与微种植体支抗(6、8、10、12 mm)共16种不同组合并施加3/16、3.5 oz弹性牵引力的三维有限元模型。对各模型进行模拟,评估其对牙周膜应力分布的影响以及上颌前牙的移动模式。结果 根据前牙内收时牙周膜内的应力变化,应力主要集中在牙颈部和根尖区与牙槽骨接触的区域,呈现出明显的局部集中现象。微种植体支抗高度和牵引钩高度的增加可以显著减少牙冠和根尖的位置变化。当牵引钩高度大于8 mm,微种植体支抗高度大于10 mm时,才可以使得尖牙有更多的整体移动,避免尖牙的伸长,防止覆𬌗的加深。同时高牵引钩配合高微种植体支抗的组合还使得牙齿更趋向于整体移动,减少了不必要的倾斜和旋转。结论 在使用无托槽隐形矫治器进行上颌前牙内收时,采用高位微种植体支抗和高位牵引钩的组合可以显著提高前牙转矩的控制效果,并有效预防覆𬌗的加深。

关键词: 三维有限元分析, 微种植体支抗, 无托槽隐形矫治

Abstract:

Objective To investigate the mechanical effects of various height combinations of canine long-arm hooks and micro-implant anchorage on the retraction of maxillary anterior teeth in clear aligner treatment. It focuses on analyzing the stress distribution within the periodontal ligament and the movement tendencies of the anterior teeth, providing scientific evidence for optimizing orthodontic treatment strategies. Methods Three-dimensional finite element models were developed using CBCT scan data of patients and software including Mimics, Geomagic Studio, and Hypermesh. The models incorporated 16 different configurations of canine long-arm hooks(4, 6, 8, 10 mm) and micro-implant anchorage(6, 8, 10, 12 mm). Elastic traction forces of 3/16, 3.5 oz were applied to these models. Simulations assessed how these variables influenced periodontal ligament stress distribution and the movement patterns of the maxillary anterior teeth. Results Stress during anterior teeth retraction was predominantly concentrated in the cervical and apex regions of the periodontal ligament, where it interfaced with the alveolar bone, indicating significant local concentration. Increasing the height of micro-implant anchorage and traction hooks markedly reduced positional changes in both the crown and apex. Specifically, when hooks exceeded 8 mm and anchorage heights surpassed 10 mm, canine movement became more uniform, preventing extrusion and minimizing the deepening of the overbite. Additionally, combinations of high traction hooks and high micro-implant anchorage promoted more uniform tooth movement, reducing unnecessary tipping and rotation. Conclusion In the retraction of maxillary anterior teeth with clear aligners, using high-position micro-implant anchorage and high-position traction hooks significantly enhances torque control of anterior teeth and effectively prevents deepening of the overbite.

Key words: three-dimensional finite element analysis, micro-implant anchorage, clear aligner

中图分类号: