Stomatology ›› 2024, Vol. 44 ›› Issue (7): 540-544.doi: 10.13591/j.cnki.kqyx.2024.07.010
• Review • Previous Articles Next Articles
XU Siyi,YANG Zhenze,XUE Leilei,QI Yezi,LIN Jun()
Received:
2023-09-12
Online:
2024-07-28
Published:
2024-07-15
CLC Number:
XU Siyi, YANG Zhenze, XUE Leilei, QI Yezi, LIN Jun. Research progress of TACAN’s involvement in orthodontic mechanical pain modulation[J]. Stomatology, 2024, 44(7): 540-544.
[1] | 阿迪拉·艾赛提, 王琛, 周薇娜, 等. 颞下颌关节紊乱病患者与健康人群颌面部机械疼痛敏感性的比较[J]. 口腔医学, 2021, 41(4):303-308. |
[2] | Tang ZW, Zhou JW, Long H, et al. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain[J]. J Oral Rehabil, 2022, 49(2):125-137. |
[3] | 吴嵩, 缪伟男, 张雪文, 等. 正畸疼痛的临床研究[J]. 口腔医学, 2018, 38(6):556-559. |
[4] | Lai TT, Chiou JY, Lai TC, et al. Perceived pain for orthodontic patients with conventional brackets or self-ligating brackets over 1 month period: A single-center, randomized controlled clinical trial[J]. J Formos Med Assoc, 2020, 119(<W>1 Pt 2):282-289. |
[5] | 许博洋, 李浩然, 郭义. 基于软骨细胞机械敏感性离子通道力学转导的疼痛机制探讨[J]. 中国疼痛医学杂志, 2021, 27(7):534-539, 544. |
[6] | He JZ, Li BT, Han SZ, et al. Drosophila as a model to study the mechanism of nociception[J]. Front Physiol, 2022, 13: 854124. |
[7] | 杨子圆, 卢海平, 康婷. Piezo1离子通道在口腔医学中的研究进展[J]. 口腔医学, 2020, 40(11):1046-1049. |
[8] | Thammanichanon P, Kaewpitak A, Binlateh T, et al. Varied temporal expression patterns of trigeminal TRPA1 and TRPV1 and the neuropeptide CGRP during orthodontic force-induced pain[J]. Arch Oral Biol, 2021, 128: 105170. |
[9] | 赵逢璐. 施万细胞TRPA1在正畸疼痛中的作用研究[D]. 济南: 山东大学, 2021. |
[10] |
Malik P, Korfali N, Srsen V, et al. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope[J]. Cell Mol Life Sci, 2010, 67(8):1353-1369.
doi: 10.1007/s00018-010-0257-2 pmid: 20091084 |
[11] |
Schirmer EC, Florens L, Guan TL, et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics[J]. Science, 2003, 301(5638):1380-1382.
pmid: 12958361 |
[12] | Beaulieu-Laroche L. 参与机械痛感知的新型离子通道: TACAN[J]. 中国疼痛医学杂志, 2020, 26(4):247. |
[13] | Batrakou DG, de Las Heras JI, Czapiewski R, et al. TMEM120A and B: Nuclear envelope transmembrane proteins important for adipocyte differentiation[J]. PLoS One, 2015, 10(5):e0127712. |
[14] |
Beaulieu-Laroche L, Christin M, Donoghue A, et al. TACAN is anion channel involved in sensing mechanical pain[J]. Cell, 2020, 180(5):956-967.e17.
doi: S0092-8674(20)30114-8 pmid: 32084332 |
[15] |
Arenas OM, Lumpkin EA. Touching base with mechanical pain[J]. Cell, 2020, 180(5):824-826.
doi: S0092-8674(20)30166-5 pmid: 32142674 |
[16] | Rong Y, Jiang JH, Gao YW, et al. TMEM120A contains a specific coenzyme A-binding site and might not mediate poking-or stretch-induced channel activities in cells[J]. eLife, 2021, 10: e71474. |
[17] | Xue J, Han Y, Baniasadi H, et al. TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase[J]. eLife, 2021, 10: e71220. |
[18] | Chen XZ, Wang YJ, Li Y, et al. Cryo-EM structure of the human TACAN in a closed state[J]. Cell Rep, 2022, 38(9):110445. |
[19] | Niu YM, Tao X, Vaisey G, et al. Analysis of the mechanosensor channel functionality of TACAN[J]. eLife, 2021, 10: e71188. |
[20] |
Jakobsson A, Westerberg R, Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism[J]. Prog Lipid Res, 2006, 45(3):237-249.
doi: 10.1016/j.plipres.2006.01.004 pmid: 16564093 |
[21] | Nie LY, Pascoa C, Pike ACW, et al. The structural basis off attyacidelongation by the ELOVL elongases[J]. Nat Struct Mol Biol, 2021, 28(6):512-520. |
[22] |
de Las Heras JI, Zuleger N, Batrakou DG, et al. Tissue-specific NETs alter genome organization and regulation even in a heterologous system[J]. Nucleus, 2017, 8(1):81-97.
doi: 10.1080/19491034.2016.1261230 pmid: 28045568 |
[23] |
Czapiewski R, Batrakou DG, de Las Heras JI, et al. Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy[J]. Nat Commun, 2022, 13(1):321.
doi: 10.1038/s41467-021-27869-2 pmid: 35027552 |
[24] | Qian NC, Li S, Tan X. The curious case of TMEM120A: Mechanosensor, fat regulator, or antiviral defender?[J]. Bioessays, 2022, 44(6):e2200045. |
[25] | 赵凡迪, 徐辉. 正畸疼痛在牙周牙髓中的分子机制及疼痛控制[J]. 北京口腔医学, 2019, 27(4):236-240. |
[26] |
Rahman F, Harada F, Saito I, et al. Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors[J]. Neurosci Lett, 2011, 488(2):173-177.
doi: 10.1016/j.neulet.2010.11.023 pmid: 21078372 |
[27] | Erdinç AM, Dinçer B. Perception of pain during orthodontic treatment with fixed appliances[J]. Eur J Orthod, 2004, 26(1):79-85. |
[28] |
Pokhilko A, Nash A, Cader MZ. Common transcriptional signatures of neuropathic pain[J]. Pain, 2020, 161(7):1542-1554.
doi: 10.1097/j.pain.0000000000001847 pmid: 32107361 |
[29] | Shang YC, Li YH, Yang ZY, et al. Upregulation of TACAN in the trigeminal ganglion affects pain transduction in acute pulpitis[J]. Arch Oral Biol, 2022, 143: 105530. |
[30] | Bonet IJM, Araldi D, Bogen O, et al. Involvement of TACAN, a mechanotransducing ion channel, in inflammatory but not neuropathic hyperalgesia in the rat[J]. J Pain, 2021, 22(5):498-508. |
[31] | Zhang XL, Lei Y, Xiao YB, et al. Hen egg lysozyme alleviates static mechanical pain via NRF1-parkin-TACAN signaling axis in sensory neurons[J]. Neuroscience, 2022, 502: 52-67. |
[32] | Murthy SE, Dubin AE, Whitwam T, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels[J]. e Life, 2018, 7: e41844. |
[33] | Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels[J]. Nature, 2020, 587(7835):567-576. |
[34] |
Anderson EO, Schneider ER, Matson JD, et al. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels[J]. Cell Rep, 2018, 23(3):701-708.
doi: S2211-1247(18)30455-8 pmid: 29669276 |
[35] |
Szczot M, Nickolls AR, Lam RM, et al. The form and function of PIEZO2[J]. Annu Rev Biochem, 2021, 90: 507-534.
doi: 10.1146/annurev-biochem-081720-023244 pmid: 34153212 |
[36] | Del Rosario JS, Gabrielle M, Yudin Y, et al. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels[J]. J Gen Physiol, 2022, 154(8):e202213164. |
[37] |
Zhang MM, Wang YF, Geng J, et al. Mechanically activated piezo channels mediate touch and suppress acute mechanical pain response in mice[J]. Cell Rep, 2019, 26(6):1419-1431.e4.
doi: S2211-1247(19)30085-3 pmid: 30726728 |
[38] | Liu X, Zhang R, Fatehi M, et al. Regulation of PKD2 channel function by TACAN[J]. J Physiol, 2023, 601(1):83-98. |
[39] |
Douguet D, Patel A, Honoré E. Structure and function of polycystins: Insights into polycystic kidney disease[J]. Nat Rev Nephrol, 2019, 15(7):412-422.
doi: 10.1038/s41581-019-0143-6 pmid: 30948841 |
[40] |
Köttgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex[J]. J Cell Biol, 2008, 182(3):437-447.
doi: 10.1083/jcb.200805124 pmid: 18695040 |
[41] | Kobori T, Smith GD, Sandford R, et al. The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2: 2 stoichiometry and an alternating subunit arrangement[J]. J Biol Chem, 2009, 284(51):35507-35513. |
[42] |
Peyronnet R, Martins JR, Duprat F, et al. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells[J]. EMBO Rep, 2013, 14(12):1143-1148.
doi: 10.1038/embor.2013.170 pmid: 24157948 |
[43] | Empitu MA, Kadariswantiningsih IN. Regulation of PKD2 channel by TACAN: How does it link to cystogenesis in autosomal dominant polycystic kidney disease?[J]. J Physiol, 2023, 601(5):887-888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||