[1] |
Fasano M, D’Onofrio I, Belfiore MP, et al. Head and neck squamous cell carcinoma in elderly patients: Role of radiotherapy and chemotherapy[J]. Cancers, 2022, 14(3): 472.
|
[2] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48.
|
[3] |
Yuan ZC, Huang JT, Teh BM, et al. Exploration of a predictive model based on genes associated with fatty acid metabolism and clinical treatment for head and neck squamous cell carcinoma[J]. J Clin Lab Anal, 2022, 36(11): e24722.
|
[4] |
Li LY, Yang Q, Jiang YY, et al. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer[J]. Nat Commun, 2021, 12(1): 4362.
|
[5] |
Tan M, Lin XY, Chen HY, et al. Sterol regulatory element binding transcription factor 1 promotes proliferation and migration in head and neck squamous cell carcinoma[J]. Peer J, 2023, 11: e15203.
|
[6] |
Li K, Zhang CC, Chen L, et al. The role of acetyl-coA carboxylase2 in head and neck squamous cell carcinoma[J]. Peer J, 2019, 7: e7037.
|
[7] |
Göttgens EL, van den Heuvel CN, de Jong MC, et al. ACLY (ATP citrate lyase) mediates radioresistance in head and neck squamous cell carcinomas and is a novel predictive radiotherapy biomarker[J]. Cancers, 2019, 11(12): 1971.
|
[8] |
Kao YC, Lee SW, Lin LC, et al. Fatty acid synthase overexpression confers an independent prognosticator and associates with radiation resistance in nasopharyngeal carcinoma[J]. Tumour Biol, 2013, 34(2): 759-768.
|
[9] |
Aquino IG, Bastos DC, Cuadra-Zelaya FJM, et al. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines[J]. Arch Oral Biol, 2020, 113: 104707.
|
[10] |
Chen JY, Zhang F, Ren XS, et al. Targeting fatty acid synthase sensitizes human nasopharyngeal carcinoma cells to radiation via downregulating frizzled class receptor 10[J]. Cancer Biol Med, 2020, 17(3): 740-752.
|
[11] |
Agostini M, Almeida LY, Bastos DC, et al. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas[J]. Mol Cancer Ther, 2014, 13(3): 585-595.
doi: 10.1158/1535-7163.MCT-12-1136
pmid: 24362464
|
[12] |
Almeida LY, Moreira FDS, Santos GASD, et al. FASN inhibition sensitizes metastatic OSCC cells to cisplatin and paclitaxel by downregulating cyclin B1[J]. Oral Dis, 2023, 29(2): 649-660.
|
[13] |
Jain P, Nattakom M, Holowka D, et al. Runx1 role in epithelial and cancer cell proliferation implicates lipid metabolism and Scd1 and Soat1 activity[J]. Stem Cells, 2018, 36(10): 1603-1616.
doi: 10.1002/stem.2868
pmid: 29938858
|
[14] |
Nanjappa V, Renuse S, Sathe GJ, et al. Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes[J]. Cancer Biol Ther, 2015, 16(11): 1593-1603.
doi: 10.1080/15384047.2015.1078022
pmid: 26391970
|
[15] |
Min JY, Kim DH. Stearoyl-CoA desaturase 1 as a therapeutic biomarker: Focusing on cancer stem cells[J]. Int J Mol Sci, 2023, 24(10): 8951.
|
[16] |
Schminke B, Shomroni O, Salinas G, et al. Prognostic factor identification by screening changes in differentially expressed genes in oral squamous cell carcinoma[J]. Oral Dis, 2023, 29(1): 116-127.
|
[17] |
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA desaturase 1 as a therapeutic target for thetreatment of cancer[J]. Cancers, 2019, 11(7): 948.
|
[18] |
Luo M, Liu YQ, Zhang H, et al. Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells[J]. Lab Invest, 2022, 102(7): 722-730.
|
[19] |
Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161(2): bqz046.
|
[20] |
Chen YX, Zhou YY, Han FW, et al. A novel miR-1291-ERRα-CPT1C axis modulates tumor cell proliferation, metabolism and tumorigenesis[J]. Theranostics, 2020, 10(16): 7193-7210.
doi: 10.7150/thno.44877
pmid: 32641987
|
[21] |
Du QQ, Tan ZQ, Shi F, et al. PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation[J]. Cancer Sci, 2019, 110(6): 2050-2062.
|
[22] |
Moody L, Xu GB, Chen H, et al. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 141-152.
|
[23] |
Tan ZQ, Xiao LB, Tang M, et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy[J]. Theranostics, 2018, 8(9): 2329-2347.
doi: 10.7150/thno.21451
pmid: 29721083
|
[24] |
Holubarsch CJF, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: The ERGO (etomoxir for the recovery of glucose oxidation) study[J]. Clin Sci, 2007, 113(4): 205-212.
|
[25] |
Fujiwara N, Nakagawa H, Enooku K, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity[J]. Gut, 2018, 67(8): 1493-1504.
doi: 10.1136/gutjnl-2017-315193
pmid: 29437870
|
[26] |
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease[J]. Int Rev Cell Mol Biol, 2016, 321: 29-88.
doi: 10.1016/bs.ircmb.2015.10.001
pmid: 26811286
|
[27] |
Uchiyama Y, Hayasaka T, Masaki N, et al. Imaging mass spectrometry distinguished the cancer and stromal regions of oral squamous cell carcinoma by visualizing phosphatidylcholine (16: 0/16: 1) and phosphatidylcholine (18: 1/20: 4)[J]. Anal Bioanal Chem, 2014, 406(5): 1307-1316.
|
[28] |
Yang XH, Song XW, Yang XD, et al. Big cohort metabolomic profiling of serum for oral squamous cell carcinoma screening and diagnosis[J]. Natural Sciences, 2022, 2(1): e20210071.
|
[29] |
Wang YH, Zhang XX, Wang S, et al. Identification of metabolism-associated biomarkers for early and precise diagnosis of oral squamous cell carcinoma[J]. Biomolecules, 2022, 12(3): 400.
|
[30] |
Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127.
|
[31] |
Liu F, Wu Y, Liu J, et al. A miR-205-LPCAT1 axis contributes to proliferation and progression in multiple cancers[J]. Biochem Biophys Res Commun, 2020, 527(2): 474-480.
|
[32] |
Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, et al. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor[J]. PLoS One, 2015, 10(3): e0120143.
|
[33] |
Zhang HY, Zheng YQ. LPCAT1 is transcriptionally regulated by FOXA1 to promote breast cancer progression and paclitaxel resistance[J]. Oncol Lett, 2023, 25(4): 134.
|
[34] |
Tao MY, Luo J, Gu T, et al. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma[J]. Cell Death Dis, 2021, 12(9): 845.
|
[35] |
Xue LY, Qi HY, Zhang H, et al. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy[J]. Front Oncol, 2020, 10: 1510.
doi: 10.3389/fonc.2020.01510
pmid: 32974183
|
[36] |
Tilija Pun N, Jeong CH. Statin as a potential chemotherapeutic agent: Current updates as a monotherapy, combination therapy, and treatment for anti-cancer drug resistance[J]. Pharmaceuticals, 2021, 14(5): 470.
|
[37] |
Kansal V, Burnham AJ, Kinney BLC, et al. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models[J]. J Immunother Cancer, 2023, 11(1): e005940.
|
[38] |
Fernandez KA, Allen P, Campbell M, et al. Atorvastatin is associated with reduced cisplatin-induced hearing loss[J]. J Clin Invest, 2021, 131(1): e142616.
|
[39] |
Ricco N, Flor A, Wolfgeher D, et al. Mevalonate pathway activity as a determinant of radiation sensitivity in head and neck cancer[J]. Mol Oncol, 2019, 13(9): 1927-1943.
doi: 10.1002/1878-0261.12535
pmid: 31225926
|
[40] |
Zhao XY, Guo B, Sun WJ, et al. Targeting squalene epoxidase confers metabolic vulnerability and overcomes chemoresistance in HNSCC[J]. Adv Sci, 2023, 10(27): e2206878.
|
[41] |
Liu Y, Fang LJ, Liu WX. High SQLE expression and gene amplification correlates with poor prognosis in head and neck squamous cell carcinoma[J]. Cancer Manag Res, 2021, 13: 4709-4723.
doi: 10.2147/CMAR.S305719
pmid: 34163246
|