口腔医学 ›› 2023, Vol. 43 ›› Issue (6): 567-572.doi: 10.13591/j.cnki.kqyx.2023.06.016
黎涵懿1,黄臻臻2,朱子游3,张晗1,孙芸芸1,朱宪春1()
修回日期:
2022-07-06
出版日期:
2023-06-28
发布日期:
2023-07-06
通讯作者:
朱宪春 Tel:(0431)15344310555,E-mail:
LI Hanyi1,HUANG Zhenzhen2,ZHU Ziyou3,ZHANG Han1,SUN Yunyun1,ZHU Xianchun1()
Revised:
2022-07-06
Online:
2023-06-28
Published:
2023-07-06
摘要:
氟化钙纳米复合材料是含有氟化钙纳米颗粒(calcium fluoride nanoparticles,CaF2 NPs)的复合材料。与传统氟化钙复合材料相比它具有更好的抗菌性、生物相容性和释氟活性,近年来在新型口腔抗菌材料、防龋材料及牙体硬组织再矿化材料等方面备受关注;同时,氟化钙纳米复合材料也因具有荧光特性而在口腔肿瘤成像、靶向放化疗等领域得到了应用。氟化钙纳米复合材料在口腔材料领域具有一定的研究价值及应用前景,该文对氟化钙纳米复合材料的性能及其在口腔医学领域中的研究进展作一综述,以期为口腔氟化钙纳米复合材料的研究提供思路。
中图分类号:
黎涵懿, 黄臻臻, 朱子游, 张晗, 孙芸芸, 朱宪春. 氟化钙纳米复合材料在口腔医学领域的研究进展[J]. 口腔医学, 2023, 43(6): 567-572.
LI Hanyi, HUANG Zhenzhen, ZHU Ziyou, ZHANG Han, SUN Yunyun, ZHU Xianchun. Research progress of calcium fluoride nanocomposites in stomatology[J]. Stomatology, 2023, 43(6): 567-572.
[1] | Barot T, Rawtani D, Kulkarni P. Nanotechnology-based materials as emerging trends for dental applications[J]. Reviews Advanced Mater Science, 2021, 60(1):173-189. |
[2] | Pudovkin MS, Rakhmatullin RM. Fluoride nanoparticles for biomedical applications[M]// Nanoparticles in Medicine. Singapore: Springer Singapore, 2019: 135-174. |
[3] |
Bala WA, Benitha VS, Jeyasubramanian K, et al. Investigation of anti-bacterial activity and cytotoxicity of calcium fluoride nanoparticles[J]. J Fluor Chem, 2017, 193: 38-44.
doi: 10.1016/j.jfluchem.2016.11.014 |
[4] | 张涵, 孟令汐, 王弥粲, 等. 纳米材料在口腔医学中的应用及机制研究进展[J]. 中国口腔种植学杂志, 2021, 26(5):328-333. |
[5] | Nayak AK, Mazumder S, Ara TJ, et al. Calcium fluoride-based dental nanocomposites[M]// Asiri AM, Inamuddin, Mohammad A. Applications of Nanocomposite Materials in Dentistry. Cambridge: Woodhead Publ Ltd, 2019:27-45. |
[6] |
Khoroushi M, Kachuie M. Prevention and treatment of white spot lesions in orthodontic patients[J]. Contemp Clin Dent, 2017, 8(1):11-19.
doi: 10.4103/ccd.ccd_216_17 |
[7] |
Zhu YJ, Wang ZS, Cao JL, et al. Synthesis of ZnO/CaF2 nanocomposites with good antibacterial property and poor photocatalytic activity[J]. Mater Lett, 2013, 108: 103-105.
doi: 10.1016/j.matlet.2013.06.073 |
[8] |
Cheng L, Weir MD, Xu HHK, et al. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine[J]. Dent Mater, 2012, 28(5):573-583.
doi: 10.1016/j.dental.2012.01.006 pmid: 22317794 |
[9] |
Yi JR, Dai Q, Weir MD, et al. A nano-CaF 2-containing orthodontic cement with antibacterial and remineralization capabilities to combat enamel white spot lesions[J]. J Dent, 2019, 89: 103172.
doi: 10.1016/j.jdent.2019.07.010 |
[10] |
Wang YC, Tsai SH, Chen MH, et al. Mineral nanomedicine to enhance the efficacy of adjuvant radiotherapy for treating osteosarcoma[J]. ACS Appl Mater Interfaces, 2022, 14(4):5586-5597.
doi: 10.1021/acsami.1c21729 |
[11] |
Liu J, Dai Q, Weir MD, et al. Biocompatible nanocomposite enhanced osteogenic and cementogenic differentiation of periodontal ligament stem cells in vitro for periodontal regeneration[J]. Materials (Basel), 2020, 13(21):4951.
doi: 10.3390/ma13214951 |
[12] |
Al Tuma RR, Yassir YA. Evaluation of a newly developed calcium fluoride nanoparticles-containing orthodontic primer: An in-vitro study[J]. J Mech Behav Biomed Mater, 2021, 122: 104691.
doi: 10.1016/j.jmbbm.2021.104691 |
[13] |
Kantrong N, Khongkhaphet K, Sitornsud N, et al. Synchrotron radiation analysis of root dentin: The roles of fluoride and calcium ions in hydroxyapatite remineralization[J]. J Synchrotron Radiat, 2022, 29(Pt 2):496-504.
doi: 10.1107/S1600577521013655 pmid: 35254314 |
[14] |
Salman NR, ElTekeya M, Bakry N, et al. Comparison of remineralization by fluoride varnishes with and without casein phosphopeptide amorphous calcium phosphate in primary teeth[J]. Acta Odontol Scand, 2019, 77(1):9-14.
doi: 10.1080/00016357.2018.1490967 pmid: 30045657 |
[15] | 陈佳怡. 氟化物在龋病中的研究进展[J]. 微量元素与健康研究, 2016, 33(6):83-86. |
[16] |
Tan JJ, Jin XY. Monodisperse, colloidal and luminescent calcium fluoride nanoparticles via a citrate-assisted hydrothermal route[J]. J Colloid Interface Sci, 2018, 531: 444-450.
doi: 10.1016/j.jcis.2018.07.081 |
[17] |
Qi C, Lin J, Fu LH, et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics[J]. Chem Soc Rev, 2018, 47(2):357-403.
doi: 10.1039/c6cs00746e pmid: 29261194 |
[18] |
Li ZJ, Zhang YW, Huang L, et al. Nanoscale “fluorescent stone”: Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms[J]. Theranostics, 2016, 6(13):2380-2393.
doi: 10.7150/thno.15914 |
[19] |
Bakdach WMM, Hadad R. Effectiveness of different adjunctive interventions in the management of orthodontically induced white spot lesions: A systematic review of systematic reviews and meta-analyses[J]. Dent Med Probl, 2020, 57(3):305-325.
doi: 10.17219/dmp/118330 |
[20] |
Bapat RA, Joshi CP, Bapat P, et al. The use of nanoparticles as biomaterials in dentistry[J]. Drug Discov Today, 2019, 24(1):85-98.
doi: S1359-6446(18)30252-6 pmid: 30176358 |
[21] |
Kulshrestha S, Khan S, Hasan S, et al. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: An in vitro and in vivo approach[J]. Appl Microbiol Biotechnol, 2016, 100(4):1901-1914.
doi: 10.1007/s00253-015-7154-4 pmid: 26610805 |
[22] |
Yi JR, Weir MD, Melo MAS, et al. Novel rechargeable nano-CaF 2 orthodontic cement with high levels of long-term fluoride release[J]. J Dent, 2019, 90: 103214.
doi: 10.1016/j.jdent.2019.103214 |
[23] | Ibrahim AI, Al-Hasani NR, Thompson VP,et al. In vitro bond strengths post thermal and fatigue load cycling of sapphire brackets bonded with self-etch primer and evaluation of enamel damage[J]. J Clin Exp Dent, 2020, 12(1):e22-e30. |
[24] |
Ghafar H, Khan MI, Sarwar HS, et al. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles[J]. AAPS Pharm Sci Tech, 2020, 21(2):60.
doi: 10.1208/s12249-019-1615-5 |
[25] |
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
doi: 10.1038/nrdp.2017.38 pmid: 28805207 |
[26] | 周昱其, 孙岩. 纳米材料在牙周组织再生中的研究进展[J]. 生命的化学, 2022, 42(3):550-556. |
[27] |
Liu J, Rawlinson SCF, Hill RG, et al. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects[J]. Dent Mater, 2016, 32(10):e221-e237.
doi: 10.1016/j.dental.2016.07.003 |
[28] |
Li ZH, Liu HR, Wang R, et al. Bioactive core-shell CaF2 upconversion nanostructure for promotion and visualization of engineered bone reconstruction[J]. ACS Nano, 2020, 14(11):16085-16095.
doi: 10.1021/acsnano.0c08013 |
[29] |
Fang WJ, Ping H, Huang Y, et al. Growth of mineralized collagen films by oriented calcium fluoride nanocrystal assembly with enhanced cell proliferation[J]. J Mater Chem B, 2021, 9(33):6668-6677.
doi: 10.1039/d1tb01101d pmid: 34378626 |
[30] |
Fang WJ, Ping H, Wagermaier W, et al. Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures[J]. Nanoscale, 2021, 13(17):8293-8303.
doi: 10.1039/D1NR00789K |
[31] |
Weir MD, Moreau JL, Levine ED, et al. Nanocomposite containing CaF(2) nanoparticles: Thermal cycling, wear and long-term water-aging[J]. Dent Mater, 2012, 28(6):642-652.
doi: 10.1016/j.dental.2012.02.007 pmid: 22429937 |
[32] |
Duarte de Oliveira FJ, Ferreira da Silva Filho PS, Fernandes Costa MJ, et al. A comprehensive review of the antibacterial activity of dimethylaminohexadecyl methacrylate (DMAHDM) and its influence on mechanical properties of resin-based dental materials[J]. Jpn Dent Sci Rev, 2021, 57: 60-70.
doi: 10.1016/j.jdsr.2021.03.003 |
[33] |
Dai Q, Weir MD, Ruan JP, et al. Effect of co-precipitation plus spray-drying of nano-CaF2 on mechanical and fluoride properties of nanocomposite[J]. Dent Mater, 2021, 37(6):1009-1019.
doi: 10.1016/j.dental.2021.03.020 |
[34] |
Xu JJ, Chen YD, Li XJ, et al. Reconstruction of a demineralized dentin matrix via rapid deposition of CaF 2 nanoparticles in situ promotes dentin bonding[J]. ACS Appl Mater Interfaces, 2021, 13(43):51775-51789.
doi: 10.1021/acsami.1c15787 |
[35] |
AlRefeai MH, AlHamdan EM, Al-Saleh S, et al. Assessment of bond integrity, durability, and degree of conversion of a calcium fluoride reinforced dentin adhesive[J]. Polymers, 2021, 13(15):2418.
doi: 10.3390/polym13152418 |
[36] | Al-Saleh S, Tulbah HI, Al-Qahtani AS, et al. The influence of calcium fluoride nanoparticles' addition on the bond integrity, degree of conversion, ion-release, and dentin interaction of an adhesive[J]. Appl Nanosci, 2022: 1-12. |
[37] |
Al Hamdan EM, Al-Saleh S, AlRefeai MH, et al. Adhesive bond integrity of Y-TZP post with calcium fluoride infiltrated resin dentin adhesive: An SEM, EDX, FTIR and micro-Raman study[J]. Surf Interface Anal, 2021, 53(11):956-962.
doi: 10.1002/sia.v53.11 |
[38] |
Ritwik A, Saju KK. Development of calcium fluoride thin film on Ti-6Al-4V material by a dip coating process with an intermediate shellac layer for biocompatible orthopedic applications[J]. Int J Mech Mater Eng, 2021, 16: 7.
doi: 10.1186/s40712-021-00130-w |
[39] |
Yu ZF, He YY, Schomann T, et al. Achieving effective multimodal imaging with rare-earth ion-doped CaF2 nanoparticles[J]. Pharmaceutics, 2022, 14(4):840.
doi: 10.3390/pharmaceutics14040840 |
[40] |
Sasidharan S, Jayasree A, Fazal S, et al. Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells[J]. Biomater Sci, 2013, 1(3):294-305.
doi: 10.1039/C2BM00127F |
[41] |
Winter H, Neufeld MJ, Makotamo L, et al. Synthesis of radioluminescent CaF2: Ln core, mesoporous silica shell nanoparticles for use in X-ray based theranostics[J]. Nanomaterials (Basel), 2020, 10(8):1447.
doi: 10.3390/nano10081447 |
[42] |
Yin WY, Tian G, Ren WL, et al. Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy[J]. Dalton Trans, 2014, 43(10):3861-3870.
doi: 10.1039/c3dt52815d |
[43] |
Punjabi A, Wu X, Tokatli-Apollon A, et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy[J]. ACS Nano, 2014, 8(10):10621-10630.
doi: 10.1021/nn505051d pmid: 25291544 |
[44] |
Misiak M, Skowicki M, Lipiński T, et al. Biofunctionalized upconverting CaF2: Yb, Tm nanoparticles for Candida albicans detection and imaging[J]. Nano Res, 2017, 10(10):3333-3345.
doi: 10.1007/s12274-017-1546-y |
[45] |
Jeong SH, Shin DY, Kang IK, et al. Effective wound healing by antibacterial and bioactive calcium-fluoride-containing composite hydrogel dressings prepared using in situ precipitation[J]. ACS Biomater Sci Eng, 2018, 4(7):2380-2389.
doi: 10.1021/acsbiomaterials.8b00198 |
[46] |
Swetha DL, Vinay C, Uloopi KS, et al. Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles[J]. Contemp Clin Dent, 2019, 10(3):477-482.
doi: 10.4103/ccd.ccd_805_18 |
[47] |
Fei XZ, Li YC, Weir MD, et al. Novel pit and fissure sealant containing nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function[J]. Dent Mater, 2020, 36(9):1241-1253.
doi: 10.1016/j.dental.2020.05.010 |
[48] | 谢琳, 冯晓黎, 邓梓, 等. 口腔纳米材料的神经毒性及作用机制[J]. 口腔疾病防治, 2020, 28(9):594-599. |
[49] | 冯辰昀, 李旭东, 郑妤婕, 等. 纳米材料的毒理学研究进展[J]. 中国科学: 化学, 2022, 52(1):15-22. |
[1] | 黄进静, 陈洛, 于海洋, 甘雪琦. 数字化微笑设计在前牙美学修复中的应用及研究进展[J]. 口腔医学, 2022, 42(9): 860-864. |
[2] | 杜亚鑫. 新型树脂-陶瓷复合材料粘接性能的研究进展[J]. 口腔医学, 2022, 42(8): 764-768. |
[3] | 梁言, 许梓楠, 蔡明详, 刘湘宁. 适配体的应用及其在口腔领域的研究进展[J]. 口腔医学, 2022, 42(4): 358-361. |
[4] | 傅梦蝶, 朱丹吉, 杨国利, 姜治伟. 光遗传学技术在口腔医学中的应用进展[J]. 口腔医学, 2022, 42(4): 354-357. |
[5] | 王法程, 郝鹏杰, 卢志山. 牙龈间充质干细胞递送支架载体的研究进展[J]. 口腔医学, 2022, 42(2): 170-175. |
[6] | 刘倩利 武云霞. 复发性阿弗他溃疡心理因素生物标志物研究进展[J]. , 2021, 41(6): 572-576. |
[7] | 刘瑾 程小刚 仇珺 梅笑寒 白玉 程庚 余擎. 根管封闭剂对粪肠球菌抗菌作用的研究进展[J]. , 2020, 40(11): 1030-1036. |
[8] | 乔爱红 王晓峰. 正畸用无金属透明弓丝的最新研究进展[J]. , 2019, 39(6): 565-568. |
[9] | 邵瀛樊 王晓春. 中药治疗牙周病的研究进展[J]. , 2018, 38(8): 752-755. |
[10] | 邹净亭 赵静辉 王佳 相星辰 刘珍珍 郭宇 周延民 方 蛟. 黄芪在口腔医学中的应用研究进展[J]. , 2018, 38(2): 189-192. |
[11] | 蒋晔 张志宏 刘红红. 可视化技术在口腔种植的应用进展[J]. , 2018, 38(11): 1053-1056. |
[12] | 王慧慧 赵玉梅. 成纤维细胞生长因子的研究进展及口腔应用前景[J]. , 2017, 37(7): 651-655. |
[13] | 何光霁 张文云. 聚醚醚酮在口腔修复学中的应用[J]. , 2017, 37(10): 957-960. |
[14] | 褚明月 林开利 杨晓娟 王海丞 颜燕宏 张旗. 口腔医学研究生实验技术教学改革探索[J]. , 2017, 37(10): 901-904. |
[15] | 王宁 王钢 张泉慧 郑耀光. 融合型试题在口腔执业医师资格考试中测试效果的初步观察[J]. , 2016, 36(7): 635-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||