[1] |
Peters OA. Current challenges and concepts in the preparation of root canal systems: A review[J]. J Endod, 2004, 30(8):559-567.
|
[2] |
吴真真, 张丽萍, 郭文丽, 等. 3种机用镍钛器械预备弯曲根管中心定位能力的体外对比研究[J]. 口腔医学, 2021, 41(11):983-987,1046.
|
[3] |
Parashos P, Gordon I, Messer HH. Factors influencing defects of rotary nickel-titanium endodontic instruments after clinical use[J]. J Endod, 2004, 30(10):722-725.
|
[4] |
Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences[J]. J Endod, 2006, 32(11):1031-1043.
|
[5] |
Terauchi Y, Ali WT, Abielhassan MM. Present status and future directions: Removal of fractured instruments[J]. Int Endod J, 2022, 55(Suppl 3):685-709.
|
[6] |
Spili P, Parashos P, Messer HH. The impact of instrument fracture on outcome of endodontic treatment[J]. J Endod, 2005, 31(12):845-850.
|
[7] |
Stuart CH, Schwartz SA, Beeson TJ, et al. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment[J]. J Endod, 2006, 32(2):93-98.
|
[8] |
陈文琴, 陈作良. 器械分离的临床决策[J]. 临床口腔医学杂志, 2016, 32(6):379-381.
|
[9] |
夏冬, 李岩峰, 孙一丹. 镍钛器械分离的影响因素及预防措施[J]. 中华老年口腔医学杂志, 2017, 15(1):61-64.
|
[10] |
孙炜, 侯本祥. 影响镍钛机用根管预备器械分离的因素分析[J]. 国际口腔医学杂志, 2010, 37(6):688-690,694.
|
[11] |
Chaudhary P, Fatima F, Kumar A. Relevance of nanomaterials in food packaging and its advanced future prospects[J]. J Inorg Organomet Polym Mater, 2020, 30(12):5180-5192.
|
[12] |
刘宝玲, 蔡汝健. 纳米银抗菌及抗生物被膜机制研究进展[J]. 动物医学进展, 2023, 44(2):98-102.
|
[13] |
胡烈海, 朱新根, 余双, 等. 纳米银抗菌应用的研究进展[J]. 中国抗生素杂志, 2020, 45(8):745-750.
|
[14] |
Yuan YC, Ding LP, Chen Y, et al. Nano-silver functionalized polysaccharides as a platform for wound dressings: A review[J]. Int J Biol Macromol, 2022, 194: 644-653.
|
[15] |
徐彦彬, 李春年, 陈瑞雪, 等. 临床弃用ProTaper机用镍钛锉损伤情况分析[J]. 现代口腔医学杂志, 2019, 33(2):98-100.
|
[16] |
Wu JT, Lei G, Yan M, et al. Instrument separation analysis of multi-used ProTaper Universal rotary system during root canal therapy[J]. J Endod, 2011, 37(6):758-763.
doi: 10.1016/j.joen.2011.02.021
pmid: 21787484
|
[17] |
Pérez-Higueras JJ, Arias A, de la Macorra JC, et al. Differences in cyclic fatigue resistance between ProTaper Next and ProTaper Universal instruments at different levels[J]. J Endod, 2014, 40(9):1477-1481.
doi: 10.1016/j.joen.2014.02.025
pmid: 25146037
|
[18] |
Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials[J]. Int J Nanomedicine, 2017, 12: 3941-3965.
|
[19] |
Kędziora A, Speruda M, Krzyżewska E, et al. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents[J]. Int J Mol Sci, 2018, 19(2):444.
|
[20] |
Vigneswari S, Amelia TSM, Hazwan MH, et al. Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating[J]. Antibiotics(Basel), 2021, 10(3):229.
|
[21] |
Butler J, Handy RD, Upton M, et al. Review of antimicrobial nanocoatings in medicine and dentistry: Mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics[J]. ACS Nano, 2023, 17(8):7064-7092.
doi: 10.1021/acsnano.2c12488
pmid: 37027838
|
[22] |
Leng DY, Li Y, Zhu J, et al. The antibiofilm activity and mechanism of nanosilver- and nanozinc-incorporated mesoporous calcium-silicate nanoparticles[J]. Int J Nanomedicine, 2020, 15: 3921-3936.
|
[23] |
Chiang YC, Wang YC, Kung JC, et al. Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment[J]. J Dent, 2021, 106: 103563.
|