口腔医学 ›› 2024, Vol. 44 ›› Issue (6): 452-457.doi: 10.13591/j.cnki.kqyx.2024.06.010
黄蔼岚1,郭培培1,陆晓庆2,吴锦涛3,李泽汉3,徐秀清3,王娟3,周莉丽3()
收稿日期:
2023-08-16
出版日期:
2024-06-28
发布日期:
2024-06-27
通讯作者:
周莉丽 E-mail:基金资助:
HUANG Ailan1,GUO Peipei1,LU Xiaoqing2,WU Jintao3,LI Zehan3,XU Xiuqing3,WANG Juan3,ZHOU Lili3()
Received:
2023-08-16
Online:
2024-06-28
Published:
2024-06-27
摘要:
糖尿病(diabetes mellitus,DM)是一种以高血糖为主要特征的慢性代谢性疾病,由胰岛素抵抗或胰岛素分泌异常引起,因胰岛β细胞的破坏导致患者持续高血糖,可诱导多发性神经病变等并发症,患病率与死亡率均较高。牙髓干细胞(dental pulp stem cells,DPSCs)获取容易,具有自我更新、多向分化及高度增殖的能力,可被诱导分化为胰岛β细胞参与胰岛素分泌和免疫调节,在慢性疾病的治疗中取得了一定成果。此外,DPSCs还可通过抑制自身免疫、调节炎症及抗氧化应激等途径改善1型糖尿病患者症状。本文综述了DPSCs的生物学特性并探究其通过对DM及其并发症治疗不同机制,以期完善DM管理。
中图分类号:
黄蔼岚, 郭培培, 陆晓庆, 吴锦涛, 李泽汉, 徐秀清, 王娟, 周莉丽. 牙髓干细胞治疗糖尿病的研究进展[J]. 口腔医学, 2024, 44(6): 452-457.
HUANG Ailan, GUO Peipei, LU Xiaoqing, WU Jintao, LI Zehan, XU Xiuqing, WANG Juan, ZHOU Lili. Progress and prospects of dental pulp stem cells in diabetes treatment[J]. Stomatology, 2024, 44(6): 452-457.
[1] |
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2):88-98.
doi: 10.1038/nrendo.2017.151 pmid: 29219149 |
[2] |
Canto ED, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications[J]. Eur J Prev Cardiol, 2019, 26(2_suppl):25-32.
doi: 10.1177/2047487319878371 pmid: 31722562 |
[3] |
Park JJ. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes[J]. Diabetes Metab J, 2021, 45(2):146-157.
doi: 10.4093/dmj.2020.0282 pmid: 33813813 |
[4] |
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7):377-390.
doi: 10.1038/s41581-020-0278-5 pmid: 32398868 |
[5] |
Uribe-Etxebarria V, Agliano A, Unda F, et al. Wnt signaling reprograms metabolism in dental pulp stem cells[J]. J Cell Physiol, 2019, 234(8):13068-13082.
doi: 10.1002/jcp.27977 pmid: 30549037 |
[6] | Tsutsui TW. Dental pulp stem cells: Advances to applications[J]. Stem Cells Cloning, 2020, 13: 33-42. |
[7] |
Liu Y, Gan L, Cui DX, et al. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics[J]. World J Stem Cells, 2021, 13(11):1647-1666.
doi: 10.4252/wjsc.v13.i11.1647 pmid: 34909116 |
[8] |
Cui Y, Ji W, Gao YY, et al. Single-cell characterization of monolayer cultured human dental pulp stem cells with enhanced differentiation capacity[J]. Int J Oral Sci, 2021, 13(1):44.
doi: 10.1038/s41368-021-00140-6 pmid: 34911932 |
[9] |
Li XS, Yang KY, Chan VW, et al. Single-cell RNA-seq reveals that CD9 is a negative marker of glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells[J]. Stem Cell Reports, 2020, 15(5):1111-1126.
doi: 10.1016/j.stemcr.2020.09.009 pmid: 33096048 |
[10] | Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications[J]. Stem Cells Transl Med, 2020, 9(4):445-464. |
[11] | Aly RM, Aglan HA, Eldeen GN, et al. Efficient generation of functional pancreatic β cells from dental-derived stem cells via laminin-induced differentiation[J]. J Genet Eng Biotechnol, 2022, 20(1):85. |
[12] |
Aly RM, Aglan HA, Eldeen GN, et al. Optimization of differentiation protocols of dental tissues stem cells to pancreatic β-cells[J]. BMC Mol Cell Biol, 2022, 23(1):41.
doi: 10.1186/s12860-022-00441-6 pmid: 36123594 |
[13] | Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential[J]. Int J Mol Sci, 2021, 22(21):12018. |
[14] |
Honda M, Ohshima H. Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine[J]. J Oral Biosci, 2022, 64(1):26-36.
doi: 10.1016/j.job.2022.01.002 pmid: 35031479 |
[15] | Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, et al. The dental pulp stem/progenitor cells-mediated inflammatory-regenerative axis[J]. Tissue Eng Part B Rev, 2019, 25(5):445-460. |
[16] |
Govindasamy V, Ronald VS, Abdullah AN, et al. Differentiation of dental pulp stem cells into islet-like aggregates[J]. J Dent Res, 2011, 90(5):646-652.
doi: 10.1177/0022034510396879 pmid: 21335539 |
[17] |
Bhonde RR, Sheshadri P, Sharma S, et al. Making surrogate β-cells from mesenchymal stromal cells: Perspectives and future endeavors[J]. Int J Biochem Cell Biol, 2014, 46: 90-102.
doi: 10.1016/j.biocel.2013.11.006 pmid: 24275096 |
[18] |
Ishkitiev N, Yaegaki K, Kozhuharova A, et al. Pancreatic differentiation of human dental pulp CD117+ stem cells[J]. Regen Med, 2013, 8(5):597-612.
doi: 10.2217/rme.13.42 pmid: 23998753 |
[19] |
El-Kersh AOFO, El-Akabawy G, Al-Serwi RH. Transplantation of human dental pulp stem cells in streptozotocin-induced diabetic rats[J]. Anat Sci Int, 2020, 95(4):523-539.
doi: 10.1007/s12565-020-00550-2 pmid: 32476103 |
[20] | Jin WW, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells[J]. Cell Regen, 2022, 11(1):24. |
[21] | Memon B, Younis I, Abubaker F, et al. PDX1-/NKX6.1+ progenitors derived from human pluripotent stem cells as a novel source of insulin-secreting cells[J]. Diabetes Metab Res Rev, 2021, 37(5):e3400. |
[22] | Xu BB, Fan DY, Zhao YS, et al. Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy[J]. Front Pharmacol, 2020, 10: 1576. |
[23] |
Yagi Mendoza H, Yokoyama T, Tanaka T, et al. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system[J]. Regen Med, 2018, 13(6):673-687.
doi: 10.2217/rme-2018-0074 pmid: 30028236 |
[24] | Son YB, Bharti D, Kim SB, et al. Comparison of pluripotency, differentiation, and mitochondrial metabolism capacity in three-dimensional spheroid formation of dental pulp-derived mesenchymal stem cells[J]. Biomed Res Int, 2021, 2021: 5540877. |
[25] | Kuncorojakti S, Rodprasert W, Le QD, et al. In vitro induction of human dental pulp stem cells toward pancreatic lineages[J]. J Vis Exp, 2021, 2021(175):e62497. |
[26] |
Kuncorojakti S, Rodprasert W, Yodmuang S, et al. Alginate/Pluronic F127-based encapsulation supports viability and functionality of human dental pulp stem cell-derived insulin-producing cells[J]. J Biol Eng, 2020, 14: 23.
doi: 10.1186/s13036-020-00246-1 pmid: 32855655 |
[27] |
Fasolino M, Schwartz GW, Patil AR, et al. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes[J]. Nat Metab, 2022, 4(2):284-299.
doi: 10.1038/s42255-022-00531-x pmid: 35228745 |
[28] | Wan XX, Unanue ER. Antigen recognition in autoimmune diabetes: A novel pathway underlying disease initiation[J]. Precis Clin Med, 2018, 1(3):102-110. |
[29] | Ashour L, Al Habashneh RA, Al-Mrahelh MM, et al. The modulation of mature dendritic cells from patients with type 1 diabetes using human periodontal ligament stem cells. An in-vitro study[J]. J Diabetes Metab Disord, 2020, 19(2):1037-1044. |
[30] | Xu YF, Chen J, Zhou H, et al. Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats[J]. Clinics, 2020, 75: e1656. |
[31] | 许忆峰. 人乳牙牙髓干细胞联合高压氧治疗2型糖尿病大鼠疗效观察与机制探讨[D]. 上海: 中国人民解放军海军军医大学, 2019. |
[32] | Ma YZ, Wang LS, Yang SL, et al. The tissue origin of human mesenchymal stem cells dictates their therapeutic efficacy on glucose and lipid metabolic disorders in type Ⅱ diabetic mice[J]. Stem Cell Res Ther, 2021, 12(1):385. |
[33] | Ahmed HH, Aglan HA, Mahmoud NS, et al. Preconditioned human dental pulp stem cells with cerium and yttrium oxide nanoparticles effectively ameliorate diabetic hyperglycemia while combatting hypoxia[J]. Tissue Cell, 2021, 73: 101661. |
[34] | Jing YL, Sun QM, Xiong XL, et al. Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice[J]. J Diabetes Investig, 2019, 10(2):251-260. |
[35] |
Oliveira AG, Araújo TG, Carvalho BM, et al. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes[J]. Front Endocrinol, 2018, 9: 503.
doi: 10.3389/fendo.2018.00503 pmid: 30214428 |
[36] | 谢俊豪. 人乳牙牙髓干细胞治疗STZ诱导糖尿病大鼠的疗效观察及机制研究[D]. 上海: 中国人民解放军海军军医大学, 2021. |
[37] | Ziegler D. Diabetische polyneuropathie[J]. Internist, 2020, 61(3):243-253. |
[38] | Ziegler D, Papanas N, Schnell O, et al. Current concepts in the management of diabetic polyneuropathy[J]. J Diabetes Investig, 2021, 12(4):464-475. |
[39] | Luo LH, He Y, Wang XY, et al. Potential roles of dental pulp stem cells in neural regeneration and repair[J]. Stem Cells Int, 2018, 2018: 1731289. |
[40] |
Naruse K. Schwann cells as crucial players in diabetic neuropathy[J]. Adv Exp Med Biol, 2019, 1190: 345-356.
doi: 10.1007/978-981-32-9636-7_22 pmid: 31760655 |
[41] |
Pisciotta A, Bertoni L, Vallarola A, et al. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration[J]. Neural Regen Res, 2020, 15(3):373-381.
doi: 10.4103/1673-5374.266043 pmid: 31571644 |
[42] |
Omi M, Hata M, Nakamura N, et al. Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation[J]. Stem Cell Res Ther, 2017, 8(1):279.
doi: 10.1186/s13287-017-0729-5 pmid: 29237486 |
[43] |
Hata M, Omi M, Kobayashi Y, et al. Transplantation of human dental pulp stem cells ameliorates diabetic polyneuropathy in streptozotocin-induced diabetic nude mice: The role of angiogenic and neurotrophic factors[J]. Stem Cell Res Ther, 2020, 11(1):236.
doi: 10.1186/s13287-020-01758-9 pmid: 32546222 |
[44] | Makino E, Nakamura N, Miyabe M, et al. Conditioned media from dental pulp stem cells improved diabetic polyneuropathy through anti-inflammatory, neuroprotective and angiogenic actions: Cell-free regenerative medicine for diabetic polyneuropathy[J]. J Diabetes Investig, 2019, 10(5):1199-1208. |
[45] | Hata M, Omi M, Kobayashi Y, et al. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: Therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells[J]. Stem Cell Res Ther, 2015, 6(1):162. |
[46] | Velasco-Ortega E, Delgado-Ruiz RA, López-López J. Dentistry and diabetes: The influence of diabetes in oral diseases and dental treatments[J]. J Diabetes Res, 2016, 2016: 6073190. |
[47] | Lyu JZ, Hashimoto Y, Honda Y, et al. Comparison of osteogenic potentials of dental pulp and bone marrow mesenchymal stem cells using the new cell transplantation platform, Cell Saic, in a rat congenital cleft-jaw model[J]. Int J Mol Sci, 2021, 22(17):9478. |
[48] | Hu SL, Chen B, Zhou JN, et al. Dental pulp stem cell-derived exosomes revitalize salivary gland epithelial cell function in NOD mice via the GPER-mediated cAMP/PKA/CREB signaling pathway[J]. J Transl Med, 2023, 21(1):361. |
[49] | 姚敏慧, 吴锦涛, 周愉, 等. 牙髓再生相关细胞因子研究进展[J]. 口腔医学, 2023, 43(3):282-288. |
[50] | Chen H, Fu HC, Wu X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells[J]. Sci Adv, 2020, 6(15):eaay1514. |
[51] | Santamaria-Jr M, do Nascimento ERA, Bagne L, et al. Pulpal outcomes in orthodontic tooth movement in diabetes mellitus[J]. Odontology, 2021, 109(4):921-929. |
[52] |
Gao XL, Qin W, Chen LL, et al. Effects of targeted delivery of metformin and dental pulp stem cells on osteogenesis via demineralized dentin matrix under high glucose conditions[J]. ACS Biomater Sci Eng, 2020, 6(4):2346-2356.
doi: 10.1021/acsbiomaterials.0c00124 pmid: 33455311 |
[53] |
Guimarães ET, Cruz GD, Almeida TF, et al. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model[J]. Cell Transplant, 2013, 22(12):2345-2354.
doi: 10.3727/096368912X657972 pmid: 23068779 |
[54] |
Al-Serwi RH, El-Kersh AOFO, El-Akabawy G. Human dental pulp stem cells attenuate streptozotocin-induced parotid gland injury in rats[J]. Stem Cell Res Ther, 2021, 12(1):577.
doi: 10.1186/s13287-021-02646-6 pmid: 34775989 |
[55] |
The Lancet. Diabetes: A defining disease of the 21st century[J]. Lancet, 2023, 401(10394):2087.
doi: 10.1016/S0140-6736(23)01296-5 pmid: 37355279 |
[1] | 林仁杰, 戴安娜, 汪淑华, 丁佩惠. 糖尿病影响牙周炎患者口腔龈下菌群和唾液菌群组成的研究进展[J]. 口腔医学, 2024, 44(6): 458-461. |
[2] | 肖诗梦, 刘翼, 李茂雪, 丁一. 激光辅助伴2型糖尿病牙周炎非手术治疗的疗效评价[J]. 口腔医学, 2024, 44(3): 161-167. |
[3] | 孙苏, 冷迪雅, 王晶艳, 顾培玉, 杨连丰, 吴大明, 孙超, 张娟. 上颌前牙区多生牙的锥形束CT影像学特征研究[J]. 口腔医学, 2024, 44(2): 115-120. |
[4] | 陈思, 陈星霖, 马文杰, 杨萌, 童昕. 10例种植体折裂病例的临床分析[J]. 口腔医学, 2024, 44(1): 50-55. |
[5] | 郭媛媛, 任佳宇, 冯永亮, 任秀云. 2型糖尿病患者缺牙数目与颈动脉粥样硬化程度的相关性[J]. 口腔医学, 2023, 43(9): 791-795. |
[6] | 张逸飞, 杨琪, 李程, 李璐. Nd:YAG激光改善伴2型糖尿病牙周炎患者牙周微生态失衡的临床应用研究[J]. 口腔医学, 2023, 43(7): 619-624. |
[7] | 冯泽华, 邱爽, 徐萱雯, 郑凯, 徐艳. 介孔生物活性玻璃/聚己内酯短纤维骨组织工程支架体外抑炎功能研究[J]. 口腔医学, 2023, 43(7): 592-599. |
[8] | 伍玉,杨磊婷,江飞,周芷萱,沈铭. 铜离子对牙髓组织再生能力的影响及其机制初探[J]. 口腔医学, 2023, 43(5): 407-414. |
[9] | 李凤丹, 陈敬儒, 江银华. 牙周炎与糖尿病性视网膜病变相关性的研究进展[J]. 口腔医学, 2023, 43(10): 939-944. |
[10] | 汤春波,褚壮壮. 种植体位置异常相关并发症及处理方式探讨[J]. 口腔医学, 2023, 43(1): 28-34. |
[11] | 周毅,陈嘉杰. 植体周炎和失败种植体的骨再结合[J]. 口腔医学, 2023, 43(1): 35-38. |
[12] | 曹聪, 满毅. 种植体中央螺丝折断的风险防范及治疗考量[J]. 口腔医学, 2023, 43(1): 24-27. |
[13] | 薛冰, 席花蕾, 姚丽红, 徐婉秋, 许晓航, 王秀梅. 神经营养素对牙髓干细胞神经向分化的影响[J]. 口腔医学, 2022, 42(9): 846-850. |
[14] | 李凯一, 何汶秀, 任晓萌, 罗海燕, 李春蕾, 华红. 口腔扁平苔藓合并2型糖尿病的临床及病理特征研究[J]. 口腔医学, 2022, 42(9): 802-806. |
[15] | 关禹哲, 蒋玉坤, 吴祖平, 李天成, 胡芝爱, 邹淑娟. 机械敏感离子通道Piezo1在糖尿病大鼠牙移动过程中的表达和功能研究[J]. 口腔医学, 2022, 42(6): 487-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||