口腔医学 ›› 2024, Vol. 44 ›› Issue (7): 556-560.doi: 10.13591/j.cnki.kqyx.2024.07.013
• 综述 • 上一篇
收稿日期:
2023-04-11
出版日期:
2024-07-28
发布日期:
2024-07-15
通讯作者:
郝春波 E-mail:基金资助:
ZHAO Caitao,XIE Xiaomei,YIN Wen,CHEN Rui,FAN Zhen,HAO Chunbo()
Received:
2023-04-11
Online:
2024-07-28
Published:
2024-07-15
摘要:
牙龈间充质干细胞(gingival mesenchymal stem cells,GMSCs)是存在于牙龈组织固有层内的一群间充质干细胞,它不仅可以从健康的牙龈组织中分离出来,还可以从增生性甚至炎性牙龈组织中分离出来。GMSCs因来源丰富,易于获取,且具有独特的免疫调节特性及多向分化潜能,成为口腔疾病治疗的研究热点。目前已被应用于牙周炎、牙龈萎缩、口腔癌、颌骨缺损、神经修复等口腔疾病的治疗中,该文对近年来GMSCs在口腔疾病中相关应用的研究进展作一综述。
中图分类号:
赵彩桃, 谢小美, 尹文, 陈蕊, 范桢, 郝春波. 牙龈间充质干细胞治疗口腔疾病研究进展[J]. 口腔医学, 2024, 44(7): 556-560.
ZHAO Caitao, XIE Xiaomei, YIN Wen, CHEN Rui, FAN Zhen, HAO Chunbo. Research and application progress of gingival mesenchymal stem cells in oral diseases[J]. Stomatology, 2024, 44(7): 556-560.
[1] |
Zhang QZ, Shi SH, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183(12):7787-7798.
doi: 10.4049/jimmunol.0902318 pmid: 19923445 |
[2] |
Xu X, Chen C, Akiyama K, et al. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92(9):825-832.
doi: 10.1177/0022034513497961 pmid: 23867762 |
[3] |
Ge SH, Mrozik KM, Menicanin D, et al. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy[J]. Regen Med, 2012, 7(6):819-832.
doi: 10.2217/rme.12.61 pmid: 23164082 |
[4] |
Mitrano TI, Grob MS, Carrión F, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue[J]. J Periodontol, 2010, 81(6):917-925.
doi: 10.1902/jop.2010.090566 pmid: 20450355 |
[5] | Dave JR, Chandekar SS, Behera S, et al. Human gingival mesenchymal stem cells retain their growth and immunomodulatory characteristics independent of donor age[J]. Sci Adv, 2022, 8(25):eabm6504. |
[6] | Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem Cells, 2010, 28(10):1856-1868. |
[7] |
Zhang XM, Huang F, Li WX, et al. Human gingiva-derived mesenchymal stem cells modulate monocytes/macrophages and alleviate atherosclerosis[J]. Front Immunol, 2018, 9: 878.
doi: 10.3389/fimmu.2018.00878 pmid: 29760701 |
[8] | Su WR, Zhang QZ, Shi SH, et al. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms[J]. Stem Cells, 2011, 29(11):1849-1860. |
[9] | Chen MG, Su WR, Lin XH, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5):1181-1193. |
[10] |
Huang F, Chen MG, Chen WQ, et al. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adenosine and IDO signals[J]. Front Immunol, 2017, 8: 68.
doi: 10.3389/fimmu.2017.00068 pmid: 28210258 |
[11] | Al Bahrawy M, Ghaffar K, Gamal A, et al. Effect of inflammation on gingival mesenchymal stem/progenitor cells’ proliferation and migration through microperforated membranes: An in vitro study[J]. Stem Cells Int, 2020, 2020: 5373418. |
[12] | Ugurlu B, Karaoz E. Comparison of similar cells: Mesenchymal stromal cells and fibroblasts[J]. Acta Histochem, 2020, 122(8):151634. |
[13] | Fournier BPJ, Ferre FC, Couty L, et al. Multipotent progenitor cells in gingival connective tissue[J]. Tissue Eng Part A, 2010, 16(9):2891-2899. |
[14] |
Abdal-Wahab M, Abdel Ghaffar KA, Ezzatt OM, et al. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabonydefects(randomized clinical and biochemical trial)[J]. J Periodontal Res, 2020, 55(3):441-452.
doi: 10.1111/jre.12728 pmid: 32080858 |
[15] | Egusa H, Okita K, Kayashima H, et al. Gingival fibroblasts as a promising source of induced pluripotent stem cells[J]. PLoS One, 2010, 5(9):e12743. |
[16] | Kim D, Lee AE, Xu QL, et al. Gingiva-derived mesenchymal stem cells: Potential application in tissue engineering and regenerative medicine-A comprehensive review[J]. Front Immunol, 2021, 12: 667221. |
[17] | Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies[J]. Eur J Cell Biol, 2020, 99(7):151123. |
[18] | Al-Qadhi G, Soliman M, Abou-Shady I, et al. Gingival mesenchymal stem cells as an alternative source to bone marrow mesenchymal stem cells in regeneration of bone defects: in vivo study[J]. Tissue Cell, 2020, 63: 101325. |
[19] |
Moshaverinia A, Xu XT, Chen C, et al. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration[J]. Acta Biomater, 2013, 9(12):9343-9350.
doi: 10.1016/j.actbio.2013.07.023 pmid: 23891740 |
[20] | Cai S, Lei T, Bi W, et al. Chitosan hydrogel supplemented with metformin promotes neuron-like cell differentiation of gingival mesenchymal stem cells[J]. Int J Mol Sci, 2022, 23(6):3276. |
[21] |
Yang K, Xie DM, Lin WW, et al. Adipose mesenchymal stem cells and gingival mesenchymal stem cells have a comparable effect in endothelium repair[J]. Exp Ther Med, 2021, 22(6):1415.
doi: 10.3892/etm.2021.10851 pmid: 34676008 |
[22] | Cournil-Henrionnet C, Huselstein C, Wang Y, et al. Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion[J]. Biorheology, 2008, 45(3/4): 513-526. |
[23] |
Lei T, Wang J, Liu YY, et al. Calreticulin as a special marker to distinguish dental pulp stem cells from gingival mesenchymal stem cells[J]. Int J Biol Macromol, 2021, 178: 229-239.
doi: 10.1016/j.ijbiomac.2021.02.126 pmid: 33647340 |
[24] |
Angelopoulos I, Brizuela C, Khoury M. Gingival mesenchymal stem cells outperform haploidentical dental pulp-derived mesenchymal stem cells in proliferation rate, migration ability, and angiogenic potential[J]. Cell Transplant, 2018, 27(6):967-978.
doi: 10.1177/0963689718759649 pmid: 29770705 |
[25] | Li D, Zou XY, El-Ayachi I, et al. Human dental pulp stem cells and gingival mesenchymal stem cells display action potential capacity in vitro after neuronogenic differentiation[J]. Stem Cell Rev and Rep, 2019, 15(1):67-81. |
[26] |
Yang H, Gao LN, An Y, et al. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions[J]. Biomaterials, 2013, 34(29):7033-7047.
doi: 10.1016/j.biomaterials.2013.05.025 pmid: 23768902 |
[27] |
Chen K, Xiong HC, Huang YB, et al. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla(SCAP)and periodontal ligament stem cells(PDLSCs)[J]. Arch Oral Biol, 2013, 58(8):997-1006.
doi: 10.1016/j.archoralbio.2013.02.010 pmid: 23582988 |
[28] |
Eke PI, Thornton-Evans GO, Wei L, et al. Periodontitis in US adults: National health and nutrition examination survey 2009-2014[J]. J Am Dent Assoc, 2018, 149(7):576-588. e6.
doi: S0002-8177(18)30276-9 pmid: 29957185 |
[29] |
Sun WD, Wang ZG, Xu QC, et al. The treatment of systematically transplanted gingival mesenchymal stem cells in periodontitis in mice[J]. Exp Ther Med, 2019, 17(3):2199-2205.
doi: 10.3892/etm.2019.7165 pmid: 30783482 |
[30] | Imber JC, Kasaj A. Treatment of gingival recession: When and how?[J]. Int Dent J, 2021, 71(3):178-187. |
[31] | Sanchez N, Vignoletti F, Sanz-Martin I, et al. Cell therapy based on gingiva-derived mesenchymal stem cells seeded in a xenogeneic collagen matrix for root coverage of RT1 gingival lesions: An in vivo experimental study[J]. Int J Mol Sci, 2022, 23(6):3248. |
[32] | Kalogirou EM, Tosios KI, Christopoulos PF. The role of macrophages in oral squamous cell carcinoma[J]. Front Oncol, 2021, 11: 611115. |
[33] |
Klopp AH, Gupta A, Spaeth E, et al. Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29(1):11-19.
doi: 10.1002/stem.559 pmid: 21280155 |
[34] | Ji XL, Zhang ZH, Han Y, et al. Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo[J]. Int J Oncol, 2016, 49(5):2011-2022. |
[35] |
Du LQ, Liang QY, Ge SH, et al. The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model[J]. Stem Cell Res Ther, 2019, 10(1):224.
doi: 10.1186/s13287-019-1320-z pmid: 31358054 |
[36] | Coccè V, Farronato D, Brini AT, et al. Drug loaded gingival mesenchymal stromal cells(GinPa-MSCs)inhibit in vitro proliferation of oral squamous cell carcinoma[J]. Sci Rep, 2017, 7(1):1-8. |
[37] | Kandalam U, Kawai T, RavindranG, et al. Predifferentiated gingival stem cell-induced bone regeneration in rat alveolar bone defect model[J]. Tissue Eng Part A, 2021, 27(5/6):424-436. |
[38] |
Takezawa K, Townsend G, Ghabriel M. The facial nerve: Anatomy and associated disorders for oral health professionals[J]. Odontology, 2018, 106(2):103-116.
doi: 10.1007/s10266-017-0330-5 pmid: 29243182 |
[39] | Nocera G, Jacob C. Mechanismsof Schwann cell plasticity involved in peripheral nerve repair after injury[J]. Cell Mol Life Sci, 2020, 77(20):3977-3989. |
[40] | Mao Q, Nguyen PD, Shanti RM, et al. Gingiva-derived mesenchymal stem cell-extracellular vesicles activate schwann cell repair phenotype and promote nerve regeneration[J]. Tissue Eng Part A, 2019, 25(11/12):887-900. |
[41] |
Zhang QZ, Nguyen PD, Shi SH, et al. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration[J]. Sci Rep, 2018, 8(1):6634.
doi: 10.1038/s41598-018-24888-w pmid: 29700345 |
[42] |
Qiu JL, Wang XT, Zhou HW, et al. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: A comparative study in rats[J]. Stem Cell Res Ther, 2020, 11(1):42.
doi: 10.1186/s13287-019-1546-9 pmid: 32014015 |
[43] | Zhao T, Sun F, Liu JW, et al. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine[J]. Curr Stem Cell Res Ther, 2019, 14(6):482-494. |
[44] |
Nakao Y, Fukuda T, Zhang QZ, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122: 306-324.
doi: 10.1016/j.actbio.2020.12.046 pmid: 33359765 |
[45] |
Zhang Y, Shi S, Xu Q, et al. SIS-ECM laden with GMSC-derived exosomes promote taste bud regeneration[J]. J Dent Res, 2019, 98(2):225-233.
doi: 10.1177/0022034518804531 pmid: 30335555 |
[46] |
Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair[J]. Stem Cell Res Ther, 2018, 9(1):104.
doi: 10.1186/s13287-018-0850-0 pmid: 29653587 |
[1] | 董伟杰, 苏庭舒, 忻贤贞. 载槲皮素明胶微球对MC3T3-E1增殖和分化的影响[J]. 口腔医学, 2024, 44(7): 494-499. |
[2] | 库得来提·阿不都克力木, 董红宾, 多力昆·吾甫尔. 壳聚糖温敏水凝胶在口腔相关组织工程的应用进展[J]. 口腔医学, 2024, 44(2): 139-143. |
[3] | 朱昕妍, 靳牧涵, 严菁菁, 王美琪, 张一玲, 马俊青, 袁俊. MXene纳米材料在生物医学应用中促成骨的机制研究[J]. 口腔医学, 2024, 44(1): 75-80. |
[4] | 王一玉, 黄佳萍, 丁佩惠, 董研. 联合生物材料的牙源性间充质干细胞进行牙周组织再生的研究进展[J]. 口腔医学, 2023, 43(3): 261-266. |
[5] | 张茜, 王畅, 梁琛, 曲星源, 刘悦, 闫宝君, 王雷. 硫酸软骨素应用于骨修复材料中的研究进展[J]. 口腔医学, 2023, 43(1): 88-91. |
[6] | 吴维, 吴迪, 马珊珊, 汤春波. 水凝胶在生物医学领域的研究进展[J]. 口腔医学, 2022, 42(9): 831-837. |
[7] | 姚丽红, 徐婉秋, 许晓航, 薛冰, 席花蕾, 王秀梅. 神经调节素-1在神经损伤修复中的作用机制及研究现状[J]. 口腔医学, 2022, 42(6): 567-570. |
[8] | 张祎, 赵彬, 王璐, 姚蔚, 郝凤翔, 杨怡天. 微球在牙体组织再生领域应用的研究进展[J]. 口腔医学, 2022, 42(4): 362-367. |
[9] | 周昉, 刘俊, 胡姝颖, 史凡, 严佳, 章非敏. 可载药的磁性聚己内酯/明胶微球支架的制备及其体外成骨性能的研究[J]. 口腔医学, 2022, 42(4): 289-295. |
[10] | 王莹, 李铭铭, 赵潇, 冷迪雅, 吴大明. 载银锌介孔钙硅纳米粒子与聚己内酯复合材料的体外生物活性研究[J]. 口腔医学, 2022, 42(2): 110-116. |
[11] | 王法程, 郝鹏杰, 卢志山. 牙龈间充质干细胞递送支架载体的研究进展[J]. 口腔医学, 2022, 42(2): 170-175. |
[12] | 崔雅婷 葛少华 马保金. 丝素蛋白抗菌性修饰在皮肤组织工程中的应用[J]. , 2021, 41(8): 737-741. |
[13] | 杨世缘 胡月 周宇宁 桂志鹏 徐袁瑾. 褪黑素在牙周炎诊治中的研究进展[J]. , 2021, 41(3): 259-264. |
[14] | 李玲 葛少华. Neuregulin-1/ErbB信号通路在组织工程中作用的研究进展[J]. , 2021, 41(2): 177-182. |
[15] | 裴培 周琦琪 赵小琦 韩祥祯. VEGF和PDGF联合诱导的骨髓间充质干细胞膜片复合马鹿角粉/PVA支架的体内成血管相关研究[J]. , 2021, 41(10): 872-877. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||