[1] |
Paul B, Dube K. Identification and endodontic management of middle mesial canal in mandibular second molar using cone beam computed tomography[J]. Case Rep Dent, 2015, 2015: 867976.
|
[2] |
Kashyap RR, Beedubail SP, Kini R, et al. Assessment of the number of root canals in the maxillary and mandibular molars: A radiographic study using cone beam computed tomography[J]. J Conserv Dent, 2017, 20(5): 288-291.
|
[3] |
Mangano Guest Editor F. Digital dentistry: The revolution has begun[J]. Open Dent J, 2018, 12: 59-60.
doi: 10.2174/1874210601812010059
pmid: 29492170
|
[4] |
赵一姣, 王勇. 数字化技术在口腔医学的临床应用现状与分析[J]. 四川大学学报(医学版), 2024, 55(1): 101-110.
|
[5] |
杨雪超, 赵世勇. 数字化口腔医学教育内容及形式探讨[J]. 高教学刊, 2016, 2(2): 47-48.
|
[6] |
张晓东. 人工智能中的普遍性[J]. 计算机科学, 1988,5:1-6.
|
[7] |
Thomas LB, Mastorides SM, Viswanadhan NA, et al. Artificial intelligence: Review of current and future applications in medicine[J]. Fed Pract, 2021, 38(11): 527-538.
doi: 10.12788/fp.0174
pmid: 35136337
|
[8] |
Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930.
doi: 10.1161/CIRCULATIONAHA.115.001593
pmid: 26572668
|
[9] |
Tian YY, Chen CX, Xu XT, et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications[J]. Scanning, 2021, 2021: 9950131.
|
[10] |
van der Meer WJ, Vissink A, Ng YL, et al. 3D Computer aided treatment planning in endodontics[J]. J Dent, 2016, 45: 67-72.
doi: 10.1016/j.jdent.2015.11.007
pmid: 26627596
|
[11] |
Oza S, Lai G, Peters OA, et al. The influence of cone beam computed tomography-derived 3D-printed models on endodontic microsurgical treatment planning and confidence of the operator[J]. J Endod, 2023, 49(5): 521-527.e2.
|
[12] |
张耀超, 张琳梅. VR/AR技术在口腔教学中的应用探讨[J]. 口腔颌面修复学杂志, 2021, 22(5): 370-373.
|
[13] |
Kim-Berman H, Bui D, Lee K, et al. Student learning of head and neck anatomy using cone beam computed tomography and immersive virtual reality[J]. J Dent Educ, 2023, 87(8): 1180-1187.
|
[14] |
Wei X, Du Y, Zhou XD, et al. Expert consensus on digital guided therapy for endodontic diseases[J]. Int J Oral Sci, 2023, 15: 54.
doi: 10.1038/s41368-023-00261-0
pmid: 38052782
|
[15] |
Todd R, Resnick S, Zicarelli T, et al. Template-guided endodontic access[J]. J Am Dent Assoc, 2021, 152(1): 65-70.
doi: 10.1016/j.adaj.2020.07.025
pmid: 33168140
|
[16] |
Kamburoğlu K, Koç C, Sönmez G, et al. 3D printing in endodontics: Report of three clinical cases with innovative approaches[J]. Int J Comput Dent, 2021, 24(3): 317-328.
pmid: 34553896
|
[17] |
Leontiev W, Connert T, Weiger R, et al. Dynamic navigation in endodontics: Guided access cavity preparation by means of a miniaturized navigation system[J]. J Vis Exp, 2022,183:e63687.
|
[18] |
Gambarini G, Galli M, Stefanelli LV, et al. Endodontic microsurgery using dynamic navigation system: A case report[J]. J Endod, 2019, 45(11): 1397-1402.e6.
doi: S0099-2399(19)30544-8
pmid: 31515047
|
[19] |
Patil S, Albogami S, Hosmani J, et al. Artificial intelligence in the diagnosis of oral diseases: Applications and pitfalls[J]. Diagnostics, 2022, 12(5): 1029.
|
[20] |
孙玉春, 李骋, 陈虎. 人工智能翻开口腔医学新篇章[J]. 现代口腔医学杂志, 2022, 36(6): 361-364.
|
[21] |
Khanagar SB, Alfadley A, Alfouzan K, et al. Developments and performance of artificial intelligence models designed for application in endodontics: A systematic review[J]. Diagnostics, 2023, 13(3): 414.
|
[22] |
Zeeshan Heera Ahmed. Artificial Intelligence and Its Application in Endodontics: A Review[J]. J Contemp Dent Pract, 2023, 24(11):912-917.
doi: 10.5005/jp-journals-10024-3593
pmid: 38238281
|
[23] |
Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent, 2018, 77: 106-111.
|
[24] |
Esmaeilyfard R, Bonyadifard H, Paknahad M. Dental caries detection and classification in CBCT images using deep learning[J]. Int Dent J, 2024, 74(2):328-334.
|
[25] |
Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelligence in endodontics: Current applications and future directions[J]. J Endod, 2021, 47(9): 1352-1357.
doi: 10.1016/j.joen.2021.06.003
pmid: 34119562
|
[26] |
Orhan K, Bayrakdar IS, Ezhov M, et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans[J]. Int Endod J, 2020, 53(5): 680-689.
doi: 10.1111/iej.13265
pmid: 31922612
|
[27] |
Huang J, Farpour N, Yang BJ, et al. Uncertainty-based active learning by Bayesian U-net for multi-label cone-beam CT segmentation[J]. J Endod, 2024, 50(2): 220-228.
|
[28] |
王艳桐, 曹钰, 范志朋. 牙根纵裂的诊疗研究进展[J]. 生物医学转化, 2021, 2(2): 79-85.
|
[29] |
Baageel TM, Allah EH, Bakalka GT, et al. Vertical root fracture: Biological effects and accuracy of diagnostic imaging methods[J]. J Int Soc Prev Community Dent, 2016, 6(8): 93.
|
[30] |
MakeevaI M, Byakova SF, Novozhilova NE, et al. Detection of artificially induced vertical root fractures of different widths by cone beam computed tomography in vitro and in vivo[J]. Int Endod J, 2016, 49(10): 980-989.
doi: 10.1111/iej.12549
pmid: 26358615
|
[31] |
Hu ZY, Cao DT, Hu YN, et al. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images[J]. BMC Oral Health, 2022, 22(1): 382.
|
[32] |
Johari M, Esmaeili F, Andalib A, et al. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study[J]. Dentomaxillofac Radiol, 2017, 46(2): 20160107.
|
[33] |
Xu S, Peng H, Yang L, et al. An automatic grading system for orthodontically induced external root resorption based on deep convolutional neural network[J]. J Imaging Inform Med, 2024, 37(4): 1800-1811.
|
[34] |
Saghiri MA, Asgar K, Boukani KK, et al. A new approach for locating the minor apical foramen using an artificial neural network[J]. Int Endod J, 2012, 45(3): 257-265.
doi: 10.1111/j.1365-2591.2011.01970.x
pmid: 22007705
|
[35] |
Duman ŞB, Çelik Özen D, Bayrakdar IŞ, et al. Second mesiobuccal canal segmentation with YOLOv5 architecture using cone beam computed tomography images[J]. Odontology, 2024, 112(2): 552-561.
|
[36] |
Mallishery S, Chhatpar P, Banga KS, et al. The precision of case difficulty and referral decisions: An innovative automated approach[J]. Clin Oral Investig, 2020, 24(6): 1909-1915.
|
[37] |
Kaasalainen T, Ekholm M, Siiskonen T, et al. Dental cone beam CT: An updated review[J]. Phys Med, 2021, 88: 193-217.
doi: 10.1016/j.ejmp.2021.07.007
pmid: 34284332
|