[1] |
Ponde NO, Lortal L, Ramage G, et al. Candida albicans biofilms and polymicrobial interactions[J]. Crit Rev Microbiol, 2021, 47(1): 91-111.
|
[2] |
Pereira R, Dos Santos Fontenelle RO, de Brito ES, et al. Biofilm of Candida albicans: Formation, regulation and resistance[J]. J Appl Microbiol, 2021, 131(1): 11-22.
doi: 10.1111/jam.14949
pmid: 33249681
|
[3] |
File B, Sobel R, Becker M, et al. Fluconazole-resistant Candida albicans vaginal infections at a referral center and treated with boric acid[J]. J Low Genit Tract Dis, 2023, 27(3): 262-265.
|
[4] |
Sachivkina N, Senyagin A, Podoprigora I, et al. Enhancement of the antifungal activity of some antimycotics by farnesol and reduction of Candida albicans pathogenicity in a quail model experiment[J]. Vet World, 2022, 15(4): 848-854.
|
[5] |
Hall RA, Turner KJ, Chaloupka J, et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans[J]. Eukaryot Cell, 2011, 10(8): 1034-1042.
|
[6] |
Zhao LX, Li DD, Hu DD, et al. Effect of tetrandrine against Candida albicans biofilms[J]. PLoS One, 2013, 8(11): e79671.
|
[7] |
She XD, Zhang LL, Peng JW, et al. Mitochondrial complex Ⅰ core protein regulates cAMP signaling via phosphodiesterase Pde2 and NAD homeostasis in Candida albicans[J]. Front Microbiol, 2020, 11: 559975.
|
[8] |
Singkum P, Muangkaew W, Suwanmanee S, et al. Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol[J]. J Gen Appl Microbiol, 2020, 65(6): 277-283.
|
[9] |
Yapıcı M, Gürsu BY, Dağ İ. In vitro antibiofilm efficacy of farnesol against Candida species[J]. Int Microbiol, 2021, 24(2): 251-262.
|
[10] |
钱芳, 魏昕, 许雯倩, 等. XTT减低法检测法尼醇对白念珠菌生物被膜的抑制作用[J]. 口腔生物医学, 2014, 5(2): 82-85.
|
[11] |
张琴琴, 马鸣, 花荣, 等. 法尼醇对白念珠菌生物膜葡聚糖的影响及白念珠菌耐药相关性[J]. 口腔医学, 2023, 43(6): 488-493.
|
[12] |
章珍珍, 夏金萍, 马鸣, 等. 白念珠菌RAS1基因高表达菌株的构建及鉴定[J]. 口腔生物医学, 2016, 7(2): 72-75.
|
[13] |
Lamoth F, Lewis RE, Kontoyiannis DP. Investigational antifungal agents for invasive mycoses: A clinical perspective[J]. Clin Infect Dis, 2022, 75(3): 534-544.
doi: 10.1093/cid/ciab1070
pmid: 34986246
|
[14] |
Shafiei M, Peyton L, Hashemzadeh M, et al. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action[J]. Bioorg Chem, 2020, 104: 104240.
|
[15] |
Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide[J]. Clin Microbiol Infect, 2019, 25(7): 792-798.
|
[16] |
Rai LS, Wijlick LV, Bougnoux ME, et al. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans[J]. Yeast, 2021, 38(4): 243-250.
|
[17] |
Ho J, Camilli G, Griffiths JS, et al. Candida albicans and candidalysin in inflammatory disorders and cancer[J]. Immunology, 2021, 162(1): 11-16.
|
[18] |
Arastehfar A, Shaban T, Zarrinfar H, et al. Candidemia among Iranian patients with severe COVID-19 admitted to ICUs[J]. J Fungi (Basel), 2021, 7(4): 280.
|
[19] |
Ramage G, Vandewalle K, Wickes BL, et al. Characteristics of biofilm formation by Candida albicans[J]. Rev Iberoam Micol, 2001, 18(4): 163-170.
pmid: 15496122
|
[20] |
Massey J, Zarnowski R, Andes D. Role of the extracellular matrix in Candida biofilm antifungal resistance[J]. FEMS Microbiol Rev, 2023, 47(6): fuad059.
|
[21] |
Xia JP, Qian F, Xu WQ, et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains[J]. Biofouling, 2017, 33(4): 283-293.
|
[22] |
Castilla R, Passeron S, Cantore ML. N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase[J]. Cell Signal, 1998, 10(10): 713-719.
pmid: 9884022
|
[23] |
Jothi R, Hari Prasath N, Gowrishankar S, et al. Bacterial quorum-sensing molecules as promising natural inhibitors of Candida albicans virulence dimorphism: An In silico and in vitro study[J]. Front Cell Infect Microbiol, 2021, 11: 781790.
|
[24] |
Davis-Hanna A, Piispanen AE, Stateva LI, et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis[J]. Mol Microbiol, 2008, 67(1): 47-62.
doi: 10.1111/j.1365-2958.2007.06013.x
pmid: 18078440
|
[25] |
Huang GH, Huang Q, Wei YJ, et al. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans[J]. Mol Microbiol, 2019, 111(1): 6-16.
|
[26] |
Zeng GS, Neo SP, Pang LM, et al. Comprehensive interactome analysis for the sole adenylyl cyclase Cyr1 of Candida albicans[J]. Microbiol Spectr, 2022, 10(6): e0393422.
|
[27] |
Chen SY, Xia JP, Li CX, et al. The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: The regulation of CYR1 and PDE2[J]. BMC Microbiol, 2018, 18(1): 203.
|
[28] |
Min K, Jannace TF, Si HY, et al. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans[J]. PLoS Pathog, 2021, 17(8): e1009861.
|
[29] |
Lindsay AK, Deveau A, Piispanen AE, et al. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans[J]. Eukaryot Cell, 2012, 11(10): 1219-1225.
doi: 10.1128/EC.00144-12
pmid: 22886999
|
[30] |
Shapiro RS, Zaas AK, Betancourt-Quiroz M, et al. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance[J]. PLoS One, 2012, 7(9): e44734.
|
[31] |
Cao YY, Cao YB, Xu Z, et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol[J]. Antimicrob Agents Chemother, 2005, 49(2): 584-589.
|
[32] |
Weber S, Zeller M, Guan KM, et al. PDE2 at the crossway between cAMP and cGMP signalling in the heart[J]. Cell Signal, 2017, 38: 76-84.
doi: S0898-6568(17)30178-X
pmid: 28668721
|
[33] |
Sadek MS, Cachorro E, El-Armouche A, et al. Therapeutic implications for PDE2 and cGMP/cAMP mediated crosstalk in cardiovascular diseases[J]. Int J Mol Sci, 2020, 21(20): 7462.
|
[34] |
Morais Vasconcelos Oliveira J, Conceição Oliver J, Latércia Tranches Dias A, et al. Detection of ERG11 Overexpression in Candida albicans isolates from environmental sources and clinical isolates treated with inhibitory and subinhibitory concentrations of fluconazole[J]. Mycoses, 2021, 64(2): 220-227.
doi: 10.1111/myc.13208
pmid: 33176021
|
[35] |
Paul S, Kannan I, Mohanram K. Extensive ERG11 mutations associated with fluconazole-resistant Candida albicans isolated from HIV-infected patients[J]. Curr Med Mycol, 2019, 5(3): 1-6.
|
[36] |
Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance[J]. Antibiotics (Basel), 2020, 9(6): 312.
|
[37] |
Banerjee A, Pata J, Sharma S, et al. Directed mutational strategies reveal drug binding and transport by the MDR transporters of Candida albicans[J]. J Fungi (Basel), 2021, 7(2): 68.
|