[1] |
Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: Understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3): 167-178.
doi: 10.1038/nrg2933
pmid: 21331089
|
[2] |
Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS catalog: Knowledgebase and deposition resource[J]. Nucleic Acids Res, 2023, 51(D1): D977-D985.
|
[3] |
Qi ZH, Zhu LL, Wang KK, et al. PANoptosis: Emerging mechanisms and disease implications[J]. Life Sci, 2023, 333: 122158.
|
[4] |
Ke FFS, Vanyai HK, Cowan AD, et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK[J]. Cell, 2018, 173(5): 1217-1230. e17.
doi: S0092-8674(18)30567-1
pmid: 29775594
|
[5] |
Lu Y, Liang MM, Zhang QJ, et al. Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition(EMT)[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9): 2356-2367.
|
[6] |
Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559-575.
doi: 10.1086/519795
pmid: 17701901
|
[7] |
1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1 092 human genomes[J]. Nature, 2012, 491(7422): 56-65.
|
[8] |
Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191.
doi: 10.1093/bioinformatics/btq340
pmid: 20616382
|
[9] |
Wang WX, Lu JC, Pan NY, et al. Identification of early Alzheimer’s disease subclass and signature genes based on PANoptosis genes[J]. Front Immunol, 2024, 15: 1462003.
|
[10] |
Song F, Wang CG, Mao JZ, et al. PANoptosis-based molecular subtyping and HPAN-index predicts therapeutic response and survival in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1197152.
|
[11] |
Ye Y, Dai QJ, Qi HB. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer[J]. Cell Death Discov, 2021, 7(1): 71.
doi: 10.1038/s41420-021-00451-x
pmid: 33828074
|
[12] |
Ward LD, Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[J]. Nucleic Acids Res, 2012, 40(Database issue): D930-D934.
|
[13] |
Dong SC, Zhao NX, Spragins E, et al. Annotating and prioritizing human non-coding variants with RegulomeDB v. 2[J]. Nat Genet, 2023, 55(5): 724-726.
|
[14] |
Liu H, Duncan K, Helverson A, et al. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18[J]. eLife, 2020, 9: e51325.
|
[15] |
Schuler RE, Bugacov A, Hacia JG, et al. FaceBase: A community-driven hub for data-intensive research[J]. J Dent Res, 2022, 101(11): 1289-1298.
|
[16] |
Feng WG, Leach SM, Tipney H, et al. Spatial and temporal analysis of gene expression during growth and fusion of the mouse facial prominences[J]. PLoS One, 2009, 4(12): e8066.
|
[17] |
Leach SM, Feng WG, Williams T. Gene expression profile data for mouse facial development[J]. Data Brief, 2017, 13: 242-247.
doi: 10.1016/j.dib.2017.05.003
pmid: 28856179
|
[18] |
Li H, Jones KL, Hooper JE, et al. The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution[J]. Development, 2019, 146(12): dev174888.
|
[19] |
Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36(5): 411-420.
doi: 10.1038/nbt.4096
pmid: 29608179
|
[20] |
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
|
[21] |
Gritli-Linde A. The etiopathogenesis of cleft lip and cleft palate: Usefulness and caveats of mouse models[J]. Curr Top Dev Biol, 2008, 84: 37-138.
doi: 10.1016/S0070-2153(08)00602-9
pmid: 19186243
|
[22] |
Mukhopadhyay N, Feingold E, Moreno-Uribe L, et al. Genome-wide association study of multiethnic nonsyndromic orofacial cleft families identifies novel loci specific to family and phenotypic subtypes[J]. Genet Epidemiol, 2022, 46(3/4): 182-198.
|
[23] |
Lei R, Zhang K, Wei YX, et al. G-protein α-subunit Gsα is required for craniofacial morphogenesis[J]. PLoS One, 2016, 11(2): e0147535.
|
[24] |
Weivoda MM, Ruan M, Hachfeld CM, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways[J]. J Bone Miner Res, 2019, 34(8): 1546-1548.
doi: 10.1002/jbmr.3740
pmid: 31415114
|
[25] |
Ould Amer Y, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know?[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 868-877.
|
[26] |
Happ JT, Arveseth CD, Bruystens J, et al. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction[J]. Nat Struct Mol Biol, 2022, 29(10): 990-999.
doi: 10.1038/s41594-022-00838-z
pmid: 36202993
|
[27] |
Yang RC, Chu HS, Yue H, et al. BMP signaling maintains auricular chondrocyte identity and prevents Microtia development by inhibiting protein kinase A[J]. eLife, 2024, 12: RP91883.
|
[28] |
Ohta Y, Nakagawa K, Imai Y, et al. Cyclic AMP enhances Smad-mediated BMP signaling through PKA-CREB pathway[J]. J Bone Miner Metab, 2008, 26(5): 478-484.
doi: 10.1007/s00774-008-0850-8
pmid: 18758906
|
[29] |
Li J, Hao LY, Wu JH, et al. Linarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway protein kinase A signaling[J]. Int J Mol Med, 2016, 37(4): 901-910.
|
[30] |
Hu DE, Young NM, Li X, et al. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face[J]. Development, 2015, 142(3): 567-574.
doi: 10.1242/dev.114835
pmid: 25605783
|
[31] |
Kurosaka H, Iulianella A, Williams T, et al. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis[J]. J Clin Invest, 2014, 124(4): 1660-1671.
doi: 10.1172/JCI72688
pmid: 24590292
|
[32] |
Ferretti E, Li BS, Zewdu R, et al. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis[J]. Dev Cell, 2011, 21(4): 627-641.
doi: 10.1016/j.devcel.2011.08.005
pmid: 21982646
|
[33] |
Carroll SH, Macias Trevino C, Li EB, et al. An Irf6- Esrp1/2 regulatory axis controls midface morphogenesis in vertebrates[J]. Development, 2020, 147(24): dev194498.
|
[34] |
Monsoro-Burq AH, Wang E, Harland R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction[J]. Dev Cell, 2005, 8(2): 167-178.
doi: 10.1016/j.devcel.2004.12.017
pmid: 15691759
|
[35] |
Alappat S, Zhang ZY, Chen YP. Msx homeobox gene family and craniofacial development[J]. Cell Res, 2003, 13(6): 429-442.
doi: 10.1038/sj.cr.7290185
pmid: 14728799
|
[36] |
Leathers TA, Rogers CD. Time to go: Neural crest cell epithelial-to-mesenchymal transition[J]. Development, 2022, 149(15): dev200712.
|