口腔医学 ›› 2022, Vol. 42 ›› Issue (8): 764-768.doi: 10.13591/j.cnki.kqyx.2022.08.018
• 综述 • 上一篇
杜亚鑫
修回日期:
2021-12-14
发布日期:
2022-08-30
通讯作者:
杜亚鑫 E-mail:7519032@zju.edu.cn
DU Yaxin
Revised:
2021-12-14
Published:
2022-08-30
摘要: CAD/CAM技术在口腔修复临床的应用越来越广泛,传统的CAD/CAM材料是玻璃陶瓷或树脂,而近年来出现了一种新型树脂-陶瓷复合材料。它结合了树脂和陶瓷的优势,成为间接修复体一种新的材料选择。修复材料的粘接性能是评价其能否满足临床需要的一项重要指标,间接修复体的粘接成功对修复体的使用寿命有着举足轻重的影响。本文将根据现有文献对树脂-陶瓷复合材料的粘接性能作一综述。
中图分类号:
杜亚鑫. 新型树脂-陶瓷复合材料粘接性能的研究进展[J]. 口腔医学, 2022, 42(8): 764-768.
DU Yaxin. Progress of research on the adhesive property of novel resin-ceramic hybrid material[J]. Stomatology, 2022, 42(8): 764-768.
[1] 刘丽杨, 仇丽鸿. 可切削复合材料研究进展[J]. 中国实用口腔科杂志, 2017, 10(11):692-696. [2] Naumova EA, Schneider S, Arnold WH, et al. Wear behavior of ceramic CAD/CAM crowns and natural antagonists[J].Materials (Basel), 2017, 10(3):E244. [3] 袁珊珊, 胡小坤, 李施园, 等. 2种CAD/CAM树脂-陶瓷复合材料的临床应用研究[J]. 南京医科大学学报(自然科学版), 2019, 39(2):291-294. [4] 杨文丽, 甘抗, 介艳巧, 等. 计算机辅助设计与辅助制作纳米复合物陶瓷嵌体边缘微渗漏的研究[J]. 口腔颌面修复学杂志, 2019, 20(1):22-25. [5] 董奕彤, 陈志宇, 焦建平, 等. 新型可切削瓷材料的种类和厚度对牙合贴面抗折性影响的实验研究[J]. 实用口腔医学杂志, 2019, 35(5):727-732. [6] 吴传兴, 林敏, 陈铭晟, 等. CAD/CAM陶瓷树脂复合体材料在超薄嵌体应用中的疲劳性能研究[J]. 实用口腔医学杂志, 2020, 36(4):581-585. [7] 董奕彤. 新型可切削瓷材料的种类和厚度对牙合贴面抗折性影响的实验研究[D]. 石家庄:河北医科大学, 2019. [8] 许琛, 章非敏, 张志臣, 等. 3种冠修复材料与牙釉质磨耗性能的体外研究[J]. 南京医科大学学报(自然科学版), 2019, 39(2):272-277. [9] Nobuaki A, Keiichi Y, Takashi S. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements[J]. J Appl Oral Sci, 2015, 23(6):629-636. [10] Stawarczyk B, Krawczuk A, Ilie N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic[J]. Clin Oral Investig, 2015, 19(2):299-308. [11] Silva PNFD, Martinelli-Lobo CM, Bottino MA, et al. Bond strength between a polymer-infiltrated ceramic network and a composite for repair:Effect of several ceramic surface treatments[J]. Braz Oral Res, 2018, 32:e28. [12] Chen CF, Trindade FZ, de Jager N, et al. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses[J]. Dent Mater, 2014, 30(9):954-962. [13] Cekic-Nagas I, Ergun G, Egilmez F, et al. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials[J]. J Prosthodont Res, 2016, 60(4):265-273. [14] Güngör MB, Nemli SK, Bal BT, et al. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials[J]. J Adv Prosthodont, 2016, 8(4):259-266. [15] Miyazaki M, Hinoura K, Onose H, et al. Effect of filler content of light-cured composites on bond strength to bovine dentine[J]. J Dent, 1991, 19(5):301-303. [16] Blatz MB, Sadan A, Kern M. Resin-ceramic bonding:A review of the literature[J]. J Prosthet Dent, 2003, 89(3):268-274. [17] Elsaka SE. Bond strength ofnovel CAD/CAM restorative materials to self-adhesive resin cement:The effect of surface treatments[J]. J Adhes Dent, 2014, 16(6):531-540. [18] Flury S, Schmidt SZ, Peutzfeldt A, et al. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage[J]. Dent Mater J, 2016, 35(5):728-735. [19] Ustun S, Ayaz EA. Effect of different cement systems and aging on the bond strength of chairside CAD-CAM ceramics[J]. J Prosthet Dent, 2021, 125(2):334-339. [20] Barutcigil K, Barutcigil Ç, Kul E, et al. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material[J]. J Prosthodont, 2019, 28(1):71-78. [21] Üstün Ö, Büyükhatipoğlu IK, Seçilmiş A. Shear bond strength of repair systems to new CAD/CAM restorative materials[J]. J Prosthodont, 2018, 27(8):748-754. [22] Lise DP, van Ende A, DeMunck J, et al. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging[J]. Oper Dent, 2017, 42(1):73-81. [23] Peumans M, Valjakova EB, De Munck J, et al. Bonding effectiveness of luting composites to different CAD/CAM materials[J]. J Adhes Dent, 2016, 18(4):289-302. [24] Schwenter J, Schmidli F, Weiger R, et al. Adhesive bonding to polymer infiltrated ceramic[J]. Dent Mater J, 2016, 35(5):796-802. [25] Sismanoglu S, Yildirim-Bilmez Z, Erten-Taysi A, et al. Influence of different surface treatments and universal adhesives on the repair of CAD-CAM composite resins:An in vitro study[J]. J Prosthet Dent, 2020, 124(2):238.e1-238238.e9. [26] Della-Bona A. Characterizing ceramics and the interfacial adhesion to resin:II- the relationship of surface treatment, bond strength, interfacial toughness and fractography[J]. J Appl Oral Sci, 2005, 13(2):101-109. [27] Della Bona A, Anusavice KJ. Microstructure, composition, and etching topography of dental ceramics[J]. Int J Prosthodont, 2002, 15(2):159-167. [28] Park JH, Choi YS.Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics[J]. J Adv Prosthodont, 2016, 8(4):275-284. [29] Duzyol M, Sagsoz O, Polat Sagsoz N, et al. The effect of surface treatments on the bond strength between CAD/CAM blocks and composite resin[J]. J Prosthodont, 2016, 25(6):466-471. [30] Sagsoz O, Polat Sagsoz N, Yurtcan MT, et al. Hydroxyapatite coating effect on the bond strength between CAD/CAM materials and a resin cement[J]. Odontology, 2019, 107(4):491-499. [31] Papia E, Larsson C, du Toit M, et al. Bonding between oxide ceramics and adhesive cement systems:A systematic review[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(2):395-413. [32] Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations:A systematic review and meta-analysis[J]. J Adhes Dent, 2015, 17(1):7-26. [33] Khan AA, AlKheraif AA, Jamaluddin S, et al. Recent trends in surface treatment methods for bonding composite cement to zirconia:A reveiw[J]. J Adhes Dent, 2017, 19(1):7-19. [34] Straface A, Rupp L, Gintaute A, et al. HF etching of CAD/CAM materials:Influence of HF concentration and etching time on shear bond strength[J]. Head Face Med, 2019, 15(1):21. [35] 传爱云. 不同表面处理对CAD/CAM可切削陶瓷与树脂粘接性能影响的研究[D]. 西安:第四军医大学, 2017. [36] 董林林. 不同酸蚀处理对CAD/CAM可切削陶瓷表面形貌及内部微观结构的影响[D]. 长春:吉林大学, 2019. [37] 张皓. 不同表面处理方法对复合物陶瓷微观结构和粘接强度影响的研究[D]. 沈阳:中国医科大学, 2018. [38] 熊成立. 不同表面处理及树脂水门汀对CAD/CAM陶瓷材料粘接强度的影响[D]. 长春:吉林大学, 2020. [39] Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems[J]. Dent Mater J, 2015, 34(2):161-167. [40] Campos F, Almeida CS,Rippe MP, et al. Resin bonding to a hybrid ceramic:Effects of surface treatments and aging[J]. Oper Dent, 2016, 41(2):171-178. [41] Tekçe N, Tuncer S, Demirci M. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives[J]. J Adv Prosthodont, 2018, 10(3):211-217. [42] Awad MM, Albedaiwi L, Almahdy A, et al. Effect of universal adhesives on microtensile bond strength to hybrid ceramic[J]. BMC Oral Health, 2019, 19(1):178. [43] Silva DBD,Bruzi G, Schmitt BP, et al. Influence of silanes on the stability of resin-ceramic bond strength[J]. Am J Dent, 2019, 32(2):89-93. [44] Chuenjit P, Suzuki M, Shinkai K. Effect of various surface treatments on the bond strength of resin luting agent and the surface roughness and surface energy of CAD/CAM materials[J]. Dent Mater J, 2021, 40(1):16-25. [45] 朱嘉, 廖岚. 混合陶瓷表面不同处理方法对树脂水门汀粘接强度影响研究[J]. 中国实用口腔科杂志, 2017, 10(5):287-290. [46] Maawadh AM, Almohareb T, Al-Hamdan RS, et al. Repair strength and surface topography of lithium disilicate and hybrid resin ceramics with LLLT and photodynamic therapy in comparison to hydrofluoric acid[J]. J Appl Biomater Funct Mater, 2020, 18:2280800020966938. [47] Takahashi N,Yabuki C, Kurokawa H, et al. Influence of surface treatment on bonding of resin luting cement to CAD/CAM composite blocks[J]. Dent Mater J, 2020, 39(5):834-843. [48] 张海兵, 霍欢, 刘利军. 不同表面处理方法对纳米复合陶瓷与树脂水门汀粘接强度的影响[J]. 华西口腔医学杂志, 2020, 38(2):155-159. [49] Buyuk SK, Kucukekenci AS. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials[J]. Angle Orthod, 2018, 88(2):221-226. [50] 杜亚鑫, 王强, 仇丽鸿. 不同表面处理方式对润瓷与树脂水门汀黏结强度的影响研究[J]. 中国实用口腔科杂志, 2020, 13(3):157-161. [51] Bayraktar Y, Arslan M, Demirtag Z. Repair bond strength and surface topography of resin-ceramic and ceramic restorative blocks treated by laser and conventional surface treatments[J]. Microsc Res Tech, 2021, 84(6):1145-1154. [52] Kilinc H, Sanal FA, Turgut S. Shear bond strengths of aged and non-aged CAD/CAM materials after different surface treatments[J]. J Adv Prosthodont, 2020, 12(5):273-282. |
[1] | 吕玮瑾, 王月秋, 陈虹, 舒菲, 张青红, 刘梅. 纤维表面沉积二氧化硅薄膜对纤维树脂复合物性能的影响[J]. 口腔医学, 2023, 43(3): 197-203. |
[2] | 张凯奇, 董建勇, 张雅杰, 何彦亭, 霍媛媛, 李肇元, 崔军. 基质细胞衍生因子-1/壳聚糖/β-甘油磷酸钠复合生物膜体外生物学特性的实验研究[J]. 口腔医学, 2023, 43(3): 212-217. |
[3] | 雷港, 魏昕, 闫明, 周莉丽, 于金华, 王娟, 吴锦涛. MTA和iRoot BP plus治疗根尖孔未闭合恒牙根尖周炎的临床疗效分析[J]. 口腔医学, 2023, 43(2): 118-124. |
[4] | 姚烁, 张晓冉, 秦露丹, 吴峻岭. 牙科自修复微胶囊材料的研究进展[J]. 口腔医学, 2023, 43(2): 166-169. |
[5] | 孙汪心悦, 舒菲, 张志豪, 陈虹, 敦芷悦, 吕玮瑾, 张青红, 刘梅. 钛表面ALD构建氧化锌纳米薄膜及其性能研究[J]. 口腔医学, 2023, 43(2): 97-103. |
[6] | 王如玉, 潘雅慧, 聂蓉蓉, 孟翔峰. 超声处理对牙本质玷污层性状及粘接强度的影响[J]. 口腔医学, 2023, 43(1): 52-56. |
[7] | 张茜, 王畅, 梁琛, 曲星源, 刘悦, 闫宝君, 王雷. 硫酸软骨素应用于骨修复材料中的研究进展[J]. 口腔医学, 2023, 43(1): 88-91. |
[8] | 郭亚林 魏煦 景建龙. 三种扫描流程制作氧化锆修复体的临床效果比较研究[J]. , 2022, 42(11): 1006-1010. |
[9] | 王贝贝, 韩菲, 袁晓君, 陈晨, 谢海峰. 杨梅素对脱矿牙本质再矿化及树脂-牙本质粘接效果的影响[J]. 口腔医学, 2022, 42(10): 865-868. |
[10] | 俎明杰, 穆森, 张瑞敏. 氧化锆在口腔种植修复中临床应用效果研究进展[J]. 口腔医学, 2022, 42(10): 956-960. |
[11] | 吴维 吴迪 马珊珊 汤春波. 水凝胶在生物医学领域的研究进展[J]. , 2022, 42(9): 831-837. |
[12] | 陈雨昕 王情情 李迎梅 李欣然 孟庆飞 孟箭. 不同牙本质肩领和冠根比对前磨牙残根纤维桩修复后抗折力影响的实验研究[J]. , 2022, 42(9): 781-784. |
[13] | 朱炳震, 李碧榕, 苏屹坤, 伍韩雪, 王景云. 义齿软衬材料抗菌改性的研究进展[J]. 口腔医学, 2022, 42(8): 759-763. |
[14] | 吴奇蓉, 雷晨, 吴迪, 周和阳, 汤春波. 钛表面芬母多肽涂层的构建及其抗菌性能探究[J]. 口腔医学, 2022, 42(7): 582-586. |
[15] | 董峻池, 郑慧玲, 卫羽雯, 马骞. 生物活性玻璃的抗菌机制及其影响因素[J]. 口腔医学, 2022, 42(6): 551-556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||