口腔医学 ›› 2023, Vol. 43 ›› Issue (8): 752-756.doi: 10.13591/j.cnki.kqyx.2023.08.016
修回日期:
2022-11-05
出版日期:
2023-08-28
发布日期:
2023-08-23
通讯作者:
蒋备战, E-mail:基金资助:
JIANG Zhen,HAN Xue,JIANG Beizhan()
Revised:
2022-11-05
Online:
2023-08-28
Published:
2023-08-23
摘要:
牙萌出是一个复杂的生理过程,涉及牙槽骨的吸收和形成。研究表明,牙囊通过调节牙齿周围骨组织重塑,在牙萌出中发挥关键作用。牙囊分泌多种趋化因子招募单核细胞,并通过RANKL/RANK/OPG轴促进破骨细胞分化成熟,导致冠方骨质吸收形成萌出道;同时牙囊内富含具有成骨分化潜能的牙囊细胞,在TGF-β/BMP和Wnt等信号通路以及表观遗传的调控下诱导根方牙槽骨形成,为萌出提供动力。近年来,有关牙萌出骨重塑机制研究取得了新进展,本文就牙萌出过程中牙囊参与调控骨重塑的细胞及分子机制作一综述。
中图分类号:
姜震, 韩雪, 蒋备战. 牙囊在牙萌出骨重塑的调控作用及机制研究进展[J]. 口腔医学, 2023, 43(8): 752-756.
JIANG Zhen, HAN Xue, JIANG Beizhan. Research progress of the regulatory mechanisms of dental follicle in bone remodeling during tooth eruption[J]. Stomatology, 2023, 43(8): 752-756.
[1] |
Richman JM. Shedding new light on the mysteries of tooth eruption[J]. Proc Natl Acad Sci USA, 2019, 116(2):353-355.
doi: 10.1073/pnas.1819412116 pmid: 30602459 |
[2] |
Lungová V, Radlanski RJ, Tucker AS, et al. Tooth-bone morphogenesis during postnatal stages of mouse first molar development[J]. J Anat, 2011, 218(6):699-716.
doi: 10.1111/j.1469-7580.2011.01367.x pmid: 21418206 |
[3] |
Park SJ, Bae HS, Cho YS, et al. Apoptosis of the reduced enamel epithelium and its implications for bone resorption during tooth eruption[J]. J Mol Histol, 2013, 44(1):65-73.
doi: 10.1007/s10735-012-9465-4 |
[4] |
Wise GE. Cellular and molecular basis of tooth eruption[J]. Orthod Craniofac Res, 2009, 12(2):67-73.
doi: 10.1111/j.1601-6343.2009.01439.x pmid: 19419449 |
[5] |
Meng MM, Chen YD, Chen XL, et al. IL-1α regulates osteogenesis and osteoclastic activity of dental follicle cells through JNK and p38 MAPK pathways[J]. Stem Cells Dev, 2020, 29(24):1552-1566.
doi: 10.1089/scd.2020.0118 pmid: 33107399 |
[6] |
Liu DW, Wise GE. Expression of endothelial monocyte-activating polypeptide II in the rat dental follicle and its potential role in tooth eruption[J]. Eur J Oral Sci, 2008, 116(4):334-340.
doi: 10.1111/j.1600-0722.2008.00547.x pmid: 18705801 |
[7] |
Wise GE, Yao S, Odgren PR, et al. CSF-1 regulation of osteoclastogenesis for tooth eruption[J]. J Dent Res, 2005, 84(9):837-841.
pmid: 16109994 |
[8] |
Liu DW, Yao SM, Wise GE. Regulation of SFRP-1 expression in the rat dental follicle[J]. Connect Tissue Res, 2012, 53(5):366-372.
doi: 10.3109/03008207.2012.664204 pmid: 22313323 |
[9] |
Liu DW, Wise GE. A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle: Role of secreted frizzled-related protein-1 in osteoclastogenesis[J]. Bone, 2007, 41(2):266-272.
doi: 10.1016/j.bone.2007.04.181 |
[10] |
Yao SM, Liu DW, Pan FH, et al. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis[J]. Arch Oral Biol, 2006, 51(7):596-602.
pmid: 16443190 |
[11] |
Castaneda B, Simon Y, Jacques J, et al. Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-κB (RANK)[J]. J Cell Physiol, 2011, 226(1):74-85.
doi: 10.1002/jcp.22305 pmid: 20635397 |
[12] |
Lézot F, Chesneau J, Battaglia S, et al. Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies[J]. Bone, 2014, 68: 146-152.
doi: 10.1016/j.bone.2014.08.018 pmid: 25193159 |
[13] |
Lézot F, Chesneau J, Navet B, et al. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: Mouse strain disparities and synergic effect with zoledronic acid[J]. Bone, 2015, 73: 51-59.
doi: 10.1016/j.bone.2014.12.011 pmid: 25532478 |
[14] |
Zeng L, He H, Sun MJ, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption[J]. Stem Cell Res Ther, 2022, 13(1):486.
doi: 10.1186/s13287-022-03140-3 pmid: 36175952 |
[15] |
Zhang JW, Liao LJ, Li YY, et al. Parathyroid hormone-related peptide (1-34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development[J]. J Cell Physiol, 2019, 234(7):11900-11911.
doi: 10.1002/jcp.27857 pmid: 30584670 |
[16] |
Cui C, Bi R, Liu W, et al. Role of PTH1R signaling in Prx1+ mesenchymal progenitors during eruption[J]. J Dent Res, 2020, 99(11):1296-1305.
doi: 10.1177/0022034520934732 pmid: 32585127 |
[17] |
Bi RY, Lyu P, Song YM, et al. Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: From mechanisms to applications[J]. Biomolecules, 2021, 11(7):997.
doi: 10.3390/biom11070997 |
[18] |
Meng ZS, Fu N, Guo SL, et al. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-β signaling pathway[J]. Bioengineered, 2021, 12(2):12294-12307.
doi: 10.1080/21655979.2021.2009974 pmid: 34927533 |
[19] |
Um S, Lee JH, Seo BM. TGF-β2 downregulates osteogenesis under inflammatory conditions in dental follicle stem cells[J]. Int J Oral Sci, 2018, 10(3):29.
doi: 10.1038/s41368-018-0028-8 pmid: 30297828 |
[20] |
Li ZZ, Wang HT, Lee GY, et al. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-β1/SMAD7/RUNX2 pathway[J]. Br J Pharmacol, 2021, 178(2):312-327.
doi: 10.1111/bph.v178.2 |
[21] |
Viale-Bouroncle S, Felthaus O, Schmalz G, et al. The transcrip-tion factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells[J]. Stem Cells Dev, 2012, 21(11):1936-1947.
doi: 10.1089/scd.2011.0422 pmid: 22107079 |
[22] |
Morsczeck C. Mechanisms during osteogenic differentiation in human dental follicle cells[J]. Int J Mol Sci, 2022, 23(11):5945.
doi: 10.3390/ijms23115945 |
[23] |
Morsczeck C, Reck A, Beck HC. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells[J]. Mol Cell Biochem, 2017, 428(1/2):79-86.
doi: 10.1007/s11010-016-2918-4 |
[24] |
Pieles O, Reichert TE, Morsczeck C. Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein[J]. Arch Oral Biol, 2022, 138: 105409.
doi: 10.1016/j.archoralbio.2022.105409 |
[25] |
Viale-Bouroncle S, Klingelhöffer C, Ettl T, et al. A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs)[J]. Cell Signal, 2015, 27(3):598-605.
doi: 10.1016/j.cellsig.2014.12.008 pmid: 25530217 |
[26] |
Klingelhöffer C, Reck A, Ettl T, et al. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3[J]. Tissue Cell, 2016, 48(4):334-339.
doi: 10.1016/j.tice.2016.05.007 pmid: 27368119 |
[27] |
Viale-Bouroncle S, Gosau M, Morsczeck C. NOTCH1 signaling regulates the BMP2/DLX-3 directed osteogenic differentiation of dental follicle cells[J]. Biochem Biophys Res Commun, 2014, 443(2):500-504.
doi: 10.1016/j.bbrc.2013.11.120 |
[28] |
Press T, Viale-Bouroncle S, Felthaus O, et al. EGR1 supports the osteogenic differentiation of dental stem cells[J]. Int Endod J, 2015, 48(2):185-192.
doi: 10.1111/iej.12299 pmid: 24749562 |
[29] |
Wise GE, He HZ, Gutierrez DL, et al. Requirement of alveolar bone formation for eruption of rat molars[J]. Eur J Oral Sci, 2011, 119(5):333-338.
doi: 10.1111/j.1600-0722.2011.00854.x pmid: 21896048 |
[30] |
Yao SM, He HZ, Gutierrez DL, et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation[J]. Cells Tissues Organs, 2013, 198(6):438-447.
doi: 10.1159/000360275 pmid: 24732882 |
[31] |
Tang J, Qing MF, Li M, et al. Dexamethasone inhibits BMP7-induced osteogenic differentiation in rat dental follicle cells via the PI3K/AKT/GSK-3β/β-catenin pathway[J]. Int J Med Sci, 2020, 17(17):2663-2672.
doi: 10.7150/ijms.44231 |
[32] |
Li CH, Yang X, He YJ, et al. Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner[J]. Int J Med Sci, 2012, 9(10):862-871.
doi: 10.7150/ijms.5027 pmid: 23155360 |
[33] |
Silvério KG, Davidson KC, James RG, et al. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells[J]. J Periodontal Res, 2012, 47(3):309-319.
doi: 10.1111/j.1600-0765.2011.01433.x pmid: 22150562 |
[34] |
Viale-Bouroncle S, Klingelhöffer C, Ettl T, et al. The WNT inhibitor APCDD1 sustains the expression of β-catenin during the osteogenic differentiation of human dental follicle cells[J]. Biochem Biophys Res Commun, 2015, 457(3):314-317.
doi: 10.1016/j.bbrc.2014.12.107 |
[35] |
Chen CC, Zhang JY, Ling JQ, et al. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts[J]. Int J Mol Med, 2018, 42(5):2403-2414.
doi: 10.3892/ijmm.2018.3822 pmid: 30106129 |
[36] |
Li XY, Chen DC, Jing XQ, et al. DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs[J]. Oral Dis, 2020, 26(2):360-369.
doi: 10.1111/odi.v26.2 |
[37] |
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB[J]. Stem Cell Res Ther, 2021, 12(1):242.
doi: 10.1186/s13287-021-02313-w |
[38] |
Du Y, Ling JQ, Wei X, et al. Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells[J]. Connect Tissue Res, 2012, 53(5):390-397.
doi: 10.3109/03008207.2012.668980 pmid: 22360497 |
[39] |
Xing YY, Yang BB, He Y, et al. Effects of mechanosensitive ion channel Piezo1 on proliferation and osteogenic differentiation of human dental follicle cells[J]. Ann Anat, 2022, 239: 151847.
doi: 10.1016/j.aanat.2021.151847 |
[40] | Ai TT, Zhang JN, Wang XD, et al. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells[J]. Signal Transduct Target Ther, 2018, 3: 1. |
[41] |
Gopinathan G, Kolokythas A, Luan XH, et al. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations[J]. Stem Cells Dev, 2013, 22(12):1763-1778.
doi: 10.1089/scd.2012.0711 pmid: 23379639 |
[42] |
Ito K, Tomoki R, Ogura N, et al. microRNA-204 regulates osteogenic induction in dental follicle cells[J]. J Dent Sci, 2020, 15(4):457-465.
doi: 10.1016/j.jds.2019.11.004 pmid: 33505617 |
[43] |
Du Y, Li J, Hou YL, et al. Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation[J]. J Cell Biochem, 2019, 120(8):13289-13301.
doi: 10.1002/jcb.28603 pmid: 30916823 |
[44] | Wu LP, Deng LD, Hong H, et al. Comparison of long non-coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells[J]. Mol Med Rep, 2019, 20(2):939-950. |
[45] |
Deng LD, Hong H, Zhang XQ, et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun, 2018, 503(3):2061-2067.
doi: 10.1016/j.bbrc.2018.07.160 |
[46] |
Chen ZY, Zheng JX, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro[J]. J Cell Physiol, 2020, 235(11):8507-8519.
doi: 10.1002/jcp.v235.11 |
[1] | 葛潇,于淼,武伟,毕秀婷,吴小燕,于晨,李倜. 钽涂层对hPDLSCs增殖及成骨分化的影响[J]. 口腔医学, 2023, 43(5): 415-420. |
[2] | 钟嘉伟,潘剑,郭雨晨. 免疫细胞调控颌骨稳态及损伤修复的研究进展[J]. 口腔医学, 2023, 43(5): 465-470. |
[3] | 何佳嘉, 张平, 周薇娜, 江宏兵. Avagacestat抑制破骨细胞形成及溶骨功能改善骨关节炎骨破坏[J]. 口腔医学, 2022, 42(9): 774-780. |
[4] | 刘煜清, 龚瑶, 赵苏峰, 戴丽. miR-155在炎症微环境下对牙周膜干细胞成骨分化的调控作用[J]. 口腔医学, 2022, 42(9): 790-795. |
[5] | 张淑婷, 吴亚星, 刘翠翠, 李晨晨, 张静. 外泌体在骨髓间充质干细胞骨向分化及其在牙周再生中的研究进展[J]. 口腔医学, 2022, 42(8): 741-744. |
[6] | 张校晨, 孙唯夫, 方世殊, 秦文, 金作林. m6A甲基化修饰参与成骨分化调控的研究进展[J]. 口腔医学, 2022, 42(7): 655-658. |
[7] | 李燕燕, 朱珠, 谢雯静, 徐子昂, 张紫薇, 张玮. 川续断皂苷Ⅵ对人颌骨骨髓间充质干细胞成骨分化的影响[J]. 口腔医学, 2022, 42(3): 204-209. |
[8] | 董硕, 汤春波. PI3K/AKT信号通路在2型糖尿病患者种植体骨结合中作用机制的研究进展[J]. 口腔医学, 2022, 42(11): 1026-1030. |
[9] | 朱珠 张玮. 川续断皂苷Ⅵ对小鼠成肌细胞成骨分化的影响[J]. , 2021, 41(5): 398-402. |
[10] | 张亚龙 孙佳瑶 宗斌 徐全臣. 经典Wnt信号通路与牙周膜干细胞成骨分化[J]. , 2021, 41(10): 936-941. |
[11] | 李若涵 佘文婷 华超 骆瑜 彭友俭. 肝细胞生长因子对成骨细胞增殖、凋亡及成骨分化的影响[J]. , 2020, 40(8): 688-691. |
[12] | 张耀元 王林 王华 陈宏裕. 慢性肾脏病继发小鼠颌骨异常的形态学研究[J]. , 2020, 40(5): 404-410. |
[13] | 王莉莉 严佳 李东升 莫秀梅 胡小坤 章非敏 刘梅. 两种新型胶原膜引导骨组织再生的体内外性能研究[J]. , 2019, 39(6): 481-487. |
[14] | 钱海馨 张富强. 微弧氧化钛表面对2型糖尿病大鼠骨髓基质干细胞成骨分化与种植体骨结合的影响[J]. , 2019, 39(12): 1062-1067. |
[15] | 李萌宇 俞叶佳 施越琦 戈旌 王绍义. 高浓度唑来膦酸对人牙周膜干细胞凋亡及成骨分化影响的实验研究[J]. , 2019, 39(10): 880-888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||