口腔医学 ›› 2025, Vol. 45 ›› Issue (8): 596-602.doi: 10.13591/j.cnki.kqyx.2025.08.006

• 基础与临床研究 • 上一篇    下一篇

基于卷积神经网络的下颌第三磨牙和下颌神经管关系诊断

张金萍1, 虞仙1, 陈熠名2, 王泽辉2, 陶瑜1, 韦一1, 李碧榕1, 朱炳震1, 张娟1()   

  1. 1 镇江市口腔医院丹徒分院, 江苏镇江 (212000)
    2 江苏科技大学海洋学院, 江苏镇江 (212000)
  • 收稿日期:2024-12-30 出版日期:2025-08-28 发布日期:2025-08-21
  • 通讯作者: 张 娟 E-mail:15905285982@139.com E-mail:15905285982@139.com
  • 基金资助:
    江苏省卫生健康委指导性项目(Z2024036);镇江市社会发展指导性科技计划(FZ2022127);镇江市社会发展指导性科技计划(FZ2022125);镇江市社会发展指导性科技计划(FZ2024101);镇江口院科研(YNKY2503)

Convolutional neural network-based diagnosis of the relationship between mandibular third molar and mandibular nerve canal

ZHANG Jinping1, YU Xian1, CHEN Yiming2, WANG Zehui2, TAO Yu1, WEI Yi1, LI Birong1, ZHU Bingzhen1, ZHANG Juan1()   

  1. Dantu Branch of Zhenjiang Stomatological Hospital, Zhenjiang 212000, China
  • Received:2024-12-30 Online:2025-08-28 Published:2025-08-21

摘要:

目的 开发一种自动化系统,能够从全景片中准确判断下颌第三磨牙和下颌神经管之间的关系。方法 选取600张口腔全景影像组成数据集,精确标注了下颌第三磨牙与下颌神经管的位置。将研究设计的模型TI-YOLOv5与PANet、Faster R-CNN、Mask R-CNN、ResNeSt-101以及原始YOLOv5(you only look once version 5)在图像分割任务上进行对比,评价指标为平均查准率(average precision,AP)和AP50结果 TI-YOLOv5 达到 AP 54.0%,AP50 94.9%,较原始 YOLOv5(AP 49.1%,AP50 88.2%)分别提升4.9%和6.7%,并超越Mask R-CNN(AP 45.1%,AP50 84.2%)等其他SOTA方法。结论 TI-YOLOv5在下颌第三磨牙与神经管的自动定位与关系分类上显著优于主流网络,具有较高的检测精度和判别准确率,可为下颌第三磨牙拔除术前风险评估提供可靠的技术支持。

关键词: 深度学习, YOLOv5, 下颌第三磨牙, 下颌神经管

Abstract:

Objective To develop an automated system that can accurately determine the relationship between the mandibular third molar and the mandibular nerve canal from panoramic images. Methods A dataset consisting of 600 panoramic images of the oral cavity was selected, and the positions of the mandibular third molar and the mandibular nerve canal were accurately labeled. We compared the research designed TI-YOLOv5 with PANet, Faster R-CNN, Mask R-CNN, ResNeSt-101, and the original YOLOv5 in image segmentation tasks, with evaluation metrics of AP and AP50. Results TI-YOLOv5 achieved AP(average precision) 54.0% and AP50 94.9%, an increase of 4.9 and 6.7 percentage points respectively compared to the original YOLOv5 (AP 49.1%, AP50 88.2%), and surpassed other SOTA methods such as Mask R-CNN (AP 45.1%, AP50 84.2%). Conclusion TI-YOLOv5 is significantly superior to mainstream networks in automatic positioning and relationship classification of mandibular wisdom teeth and neural tubes, with high detection accuracy and discrimination accuracy, and can provide reliable technical support for preoperative risk assessment of mandibular wisdom tooth extraction.

Key words: deep learning, YOLOv5, mandibular third molar, mandibular nerve canal

中图分类号: