口腔医学 ›› 2023, Vol. 43 ›› Issue (6): 534-539.doi: 10.13591/j.cnki.kqyx.2023.06.010

• 临床研究 • 上一篇    下一篇

轻量型单步深度学习网络自动识别下颌智齿牙根与下颌管位置关系的研究

王芷凡1,2,3,戴修斌4,周炎锜4,冒添逸4,黄虹1,2,3,宋洪丞1,2,3,王东苗1,2,3()   

  1. 1 南京医科大学附属口腔医院口腔颌面外科,江苏南京(210029)
    2 南京医科大学口腔疾病研究江苏省重点实验室,江苏南京(210029)
    3 江苏省口腔转化医学工程研究中心,江苏南京(210029)
    4 南京邮电大学地理与生物信息学院,江苏南京(210023)
  • 修回日期:2023-03-13 出版日期:2023-06-28 发布日期:2023-07-06
  • 通讯作者: 王东苗 Tel:(025) 69593091,E-mail:wdm9921@njmu.edu.cn
  • 基金资助:
    国家自然科学基金(61005128);江苏省卫健委科研项目(M2020021);江苏省科教能力提升工程—江苏省研究型医院(YJXYYJSDW4);江苏省医学创新中心(CXZX202227)

Automated detection of mandibular third molar root contacting with inferior alveolar canal on panoramic radiographs using a lite one-stage deep learning model

WANG Zhifan1,2,3,DAI Xiubin4,ZHOU Yanqi4,MAO Tianyi4,HUANG Hong1,2,3,SONG Hongcheng1,2,3,WANG Dongmiao1,2,3()   

  1. Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
  • Revised:2023-03-13 Online:2023-06-28 Published:2023-07-06

摘要:

目的 构建轻量型单步深度学习网络利用曲面断层片自动检测下颌智齿牙根与下颌管位置关系。方法 将1 570例2 543颗同时拍摄曲面断层片和CBCT的成人下颌智齿病例,随机分成训练组(80%)、验证组(10%)和测试组(10%)。分别使用曲面断层片和CBCT评估下颌智齿牙根与下颌管的关系,分为非接触和接触。构建基于YOLO(You only look once)模型改良的轻量型单步深度学习网络算法模型(IAC-MTMnet),以曲面断层片作为输入端,以配对CBCT诊断作为金标准,评估下颌智齿牙根与下颌管的关系。诊断性能使用正确率、灵敏度、特异度、阳性预测值以及受试者工作曲线及曲线下面积表示。结果 经CBCT诊断,下颌智齿牙根与下颌管接触的发生率为31.38%。IAC-MTMnet的诊断正确率为0.885,灵敏度为0.747,特异度为0.956,阳性预测值为0.899,受试者工作曲线下面积为0.95,测试运行时间为0.059 s。结论 IAC-MTMnet模型提升了曲面断层片诊断下颌智齿牙根与下颌管关系的性能。

关键词: 下颌智齿, 下颌管, 曲面断层片, 锥形束CT, 深度学习

Abstract:

Objective To develop a lite one-step deep learning network to detect the topographic proximity of the mandibular third molar(MTM)root to the inferior alveolar canal(IAC)on panoramic radiographs. Methods The samples, which consisted of 1 570 patients with 2 543 MTMs on paired panoramic radiographs and cone-beam computed tomography(CBCT), were randomly divided into the training group (80%), the validation group (10%), and the test group (10%). The evaluation of CBCT was defined as the ground truth. An extension of YOLO(You only look once)network, named as IAC-MTMnet, was trained to detect the proximity of MTM root to IAC on panoramic radiographs. Diagnostic performance analysis used accuracy, sensitivity, specificity, and positive predict value(PPV), and the area under the curve(AUC)was calculated based on the receiver operating characteristic(ROC)curve. Results On CBCT images, direct contact between MTM and IAC was observed on 798(31.38%)sides. The IAC-MTMnet achieved an accuracy of 0.885, a sensitivity of 0.747, a specificity of 0.956, and a PPV of 0.899. The AUC value achieved 0.95 and the test time was 0.059 s. Conclusion IAC-MTMnet is developed as a novel, robust and accurate method for detecting the proximity of MTM/IAC on panoramic radiographs.

Key words: mandibular third molar, inferior alveolar canal, panoramic radiography, CBCT, deep learning

中图分类号: