口腔医学 ›› 2026, Vol. 46 ›› Issue (1): 1-6.doi: 10.13591/j.cnki.kqyx.2026.01.001

• 学部委员专栏 •    下一篇

从液体流到离子流:牙本质敏感症机制的新范式与电化学调控策略

吴季霖, 刘欣宇, 卫彦, 邓旭亮()   

  1. 北京大学口腔医学院,国家口腔医学中心,口腔生物材料和数字诊疗装备国家工程研究中心,国家药品监督管理局口腔材料重点实验室,口腔疾病生物医用材料研发北京市重点实验室,北京(100081)
  • 收稿日期:2025-11-15 出版日期:2026-01-28 发布日期:2026-01-16
  • 通讯作者: 邓旭亮 E-mail:kqdengxuliang@bjmu.edu.cn
  • 作者简介:邓旭亮,教授、主任医师,博士生导师,北京大学口腔医院院长,中国医学科学院学术咨询委员会学部委员,国家口腔医学中心主任,口腔生物材料和数字诊疗装备国家工程研究中心主任。作为国家自然科学基金创新研究群体负责人、国家杰出青年科学基金获得者、长江学者特聘教授、国家“万人计划”领军人才,长期致力于口腔硬组织修复材料与口腔医疗智能化的研究。近年来在Science、 Nature、 Nature Materials等国际顶级期刊发表论文200余篇,获授权国家发明专利80余项。研究成果曾获教育部“高等学校科学研究优秀成果奖”科技进步奖一等奖、中华口腔医学会科技奖一等奖(第一完成人),并荣获全国创新争先奖等个人荣誉。
  • 基金资助:
    国家重点研发计划(2022YFC2405900);国家重点研发计划(2022YFC2405903);国家自然科学基金国际(地区)合作与交流项目(82561160116);国家自然科学基金青年科学基金项目(82501127)

Shifting from hydrodynamic hypothesis to ion conduction: A new paradigm and electrochemical strategy for dentin hypersensitivity

WU Jilin, LIU Xinyu, WEI Yan, DENG Xuliang()   

  1. Peking University School and Hospital of Stomatology, National Center of Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Biomaterials for Oral Disease, Beijing 100081, China
  • Received:2025-11-15 Online:2026-01-28 Published:2026-01-16
  • Contact: DENG Xuliang E-mail:kqdengxuliang@bjmu.edu.cn

摘要:

牙本质敏感症是口腔常见疾病,暴露的牙本质在受到外界刺激时会产生短暂而尖锐的疼痛,严重影响患者生活质量。然而,其机制长期受限于流体动力学假说,难以解释刺激快速致痛、镇痛效果不佳等关键临床现象。基于此,笔者创新性地从生物电化学视角提出离子电流传导机制,将牙本质小管重新定义为具备离子选择与整流特性的功能型生物纳米通道。本文系统回顾了传统理论的贡献并剖析其局限,重点阐述新机制的理论基础与实验证据:通过高分辨电化学测量证实了牙本质小管内的非对称电势分布与微安级刺激响应电流,构建了完整的“刺激-电流-疼痛”信号传导模型,验证了该机制在解释毫秒级痛觉传递中的优越性,并展示了基于该机制开发的聚阳离子脱敏材料在实现精准“电化学调控”中的临床应用潜力。这一突破性视角不仅为解决牙本质敏感症提供了新路径,更推动了该领域从“单纯封堵”到“调控电学微环境”的治疗范式转变,为开发新型脱敏材料提供了全新视角。

关键词: 牙本质敏感症, 离子电流, 牙本质小管, 生物电信号, 离子通道

Abstract:

Dentin hypersensitivity is a common oral condition characterized by short, sharp pain arising from exposed dentin in response to external stimuli, significantly impacting patients quality of life. However, its mechanism has long been constrained by the hydrodynamic hypothesis, which fails to adequately explain key clinical phenomena such as rapid pain onset and suboptimal analgesic efficacy. To address this, we innovatively propose an ion conduction mechanism from a electrochemical perspective, redefining dentinal tubules as functional biological nanochannels with ion selectivity and rectification properties. This review systematically revisits the contributions and limitations of traditional theories, while focusing on the theoretical foundation and experimental evidence for the new mechanism. Through high-resolution electrochemical measurements, we confirmed the presence of an asymmetric potential distribution and microampere-level stimulus-evoked currents within dentinal tubules, and established a comprehensive stimulus-current-pain signal transduction model. This validates the superiority of the new mechanism in explaining millisecond-level pain transmission and demonstrates the clinical potential of polycation-based desensitizing materials developed using this approach for precise electrochemical regulation. This approach not only provides a new pathway for addressing dentin hypersensitivity but also promotes a paradigm shift in the field from mere “physical occlusion”to“modulation of the electrical microenvironment”, offering a novel perspective for developing new desensitizing materials.

Key words: dentin hypersensitivity, ion current, dentinal tubules, bioelectrical signal, ion channels

中图分类号: