| [1] | Slots J. Periodontitis: Facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1):7-23. doi: 10.1111/prd.12221
																																					pmid: 28758294
 | 
																													
																						| [2] | Sculean A, Nikolidakis D, Nikou G, et al. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review[J]. Periodontol 2000, 2015, 68(1):182-216. doi: 10.1111/prd.12086
																																					pmid: 25867987
 | 
																													
																						| [3] | Park JY, Park SH, Kim MG, et al. Biomimetic scaffolds for bone tissue engineering[M]. Biomimetic Medical Materials. Singapore: Springer, 2018:109-121. | 
																													
																						| [4] | Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications[J]. Adv Drug Deliv Rev, 2019, 144:148-161. doi: 10.1016/j.addr.2019.08.010
 | 
																													
																						| [5] | Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123:14-21. doi: 10.1016/j.semcdb.2021.05.014
 | 
																													
																						| [6] | Dash TK, Konkimalla VB. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review[J]. J Control Release, 2012, 158(1):1533. | 
																													
																						| [7] | 牛丽娜, 沈敏娟, 方明. 口腔种植成骨材料的研究现状及进展[J]. 口腔医学, 2023, 43(1):11-17. | 
																													
																						| [8] | Zheng K, Niu W, Lei B, et al. Immunomodulatory bioactive glasses for tissue regeneration[J]. Acta Biomater, 2021, 133:168-186. doi: 10.1016/j.actbio.2021.08.023
																																					pmid: 34418539
 | 
																													
																						| [9] | Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties[J]. J Mater Sci: Mater Med, 2022, 33(1):3. doi: 10.1007/s10856-021-06626-3
 | 
																													
																						| [10] | Chen ZY, Yan XC, Yin S, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth[J]. Mater Sci Eng C Mater Biol Appl, 2020, 106:110289. doi: 10.1016/j.msec.2019.110289
 | 
																													
																						| [11] | Chen LJ, Liu J, Zhang YL, et al. The toxicity of silica nanoparticles to the immune system[J]. Nanomedicine (Lond), 2018, 13(15):1939-1962. doi: 10.2217/nnm-2018-0076
 | 
																													
																						| [12] | Awad K, Ahuja N, Fiedler M, et al. Ionic silicon protects oxidative damage and promotes skeletal muscle cell regeneration[J]. Int J Mol Sci, 2021, 22(2):497. doi: 10.3390/ijms22020497
 | 
																													
																						| [13] | Zhang JL, Wu Q, Yin CC, et al. Sustained calcium ion release from bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction[J]. J Leukoc Biol, 2021, 110(3):485-496. doi: 10.1002/JLB.3MA0321-739R
 | 
																													
																						| [14] | Li Y, Chen X, Jin RH, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs[J]. Sci Adv, 2021, 7(9):eabd6740. doi: 10.1126/sciadv.abd6740
 | 
																													
																						| [15] | Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis[J]. Biomaterials, 2011, 32(35):9434-9443. doi: 10.1016/j.biomaterials.2011.08.042
																																					pmid: 21889200
 | 
																													
																						| [16] | Cheng PY, Li SY, Chen HY. Macrophages in lung injury, repair, and fibrosis[J]. Cells, 2021, 10(2):436. doi: 10.3390/cells10020436
 | 
																													
																						| [17] | Wang YW, Xu DP, Liu Y, et al. The effect of tumor necrosis factor-α at different concentrations on osteogenetic differentiation of bone marrow mesenchymal stem cells[J]. J Craniofac Surg, 2015, 26(7):2081-2085. doi: 10.1097/SCS.0000000000001971
 | 
																													
																						| [18] | Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks[J]. Immune Netw, 2018, 18(1):e8. doi: 10.4110/in.2018.18.e8
 | 
																													
																						| [19] | Yao ZQ, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation[J]. Cells, 2021, 11(1):132. doi: 10.3390/cells11010132
 | 
																													
																						| [20] | Wang TT, He CQ. TNF-α and IL-6: The link between immune and bone system[J]. Curr Drug Targets, 2020, 21(3):213-227. doi: 10.2174/1389450120666190821161259
																																					pmid: 31433756
 | 
																													
																						| [21] | Zhang YM, Li XQ, Chihara T, et al. Effect of TNF-α and IL-6 on compact bone-derived cells[J]. Tissue Eng Regen Med, 2021, 18(3):441-451. doi: 10.1007/s13770-021-00336-1
																																					pmid: 33847914
 | 
																													
																						| [22] | Mo QY, Zhang W, Zhu AJ, et al. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: Current conclusions and controversies[J]. Hum Cell, 2022, 35(4):957-971. doi: 10.1007/s13577-022-00711-7
																																					pmid: 35522425
 | 
																													
																						| [23] | Steeve KT, Marc P, Sandrine T, et al. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology[J]. Cytokine Growth Factor Rev, 2004, 15(1):49-60. doi: 10.1016/j.cytogfr.2003.10.005
 | 
																													
																						| [24] | Yokota K, Sato K, Miyazaki T, et al. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis[J]. Arthritis Rheumatol, 2021, 73(7):1145-1154. doi: 10.1002/art.v73.7
 | 
																													
																						| [25] | Ansalone C, Cole J, Chilaka S, et al. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors[J]. Ann Rheum Dis, 2021, 80(6):748-757. doi: 10.1136/annrheumdis-2020-219262
																																					pmid: 33692019
 | 
																													
																						| [26] | Mody N, Parhami F, Sarafian TA, et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells[J]. Free Radic Biol Med, 2001, 31(4):509-519. doi: 10.1016/S0891-5849(01)00610-4
 | 
																													
																						| [27] | Tao HQ, Ge GR, Liang XL, et al. ROS signaling cascades: Dual regulations for osteoclast and osteoblast[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(10):1055-1062. doi: 10.1093/abbs/gmaa098
 |