口腔医学 ›› 2025, Vol. 45 ›› Issue (1): 75-80.doi: 10.13591/j.cnki.kqyx.2025.01.012
• 综述 • 上一篇
程紫阳1, 韩笑妍1, 毛珂铭1, 刘来奎2(), 梁薇薇3(
)
收稿日期:
2024-02-08
出版日期:
2025-01-28
发布日期:
2025-01-16
通讯作者:
刘来奎 E-mail:基金资助:
CHENG Ziyang1, HAN Xiaoyan1, MAO Keming1, LIU Laikui2(), LIANG Weiwei3(
)
Received:
2024-02-08
Online:
2025-01-28
Published:
2025-01-16
摘要:
骨组织工程(bone tissue engineering, BTE)有望作为自体骨移植物替代品用于骨缺损,在BTE支架材料的选择上,胶原蛋白(collagen,Col)和羟基磷灰石(hydroxyapatite, HA)因其与天然骨的相似性而引起关注。将两者结合制造出的胶原蛋白/羟基磷灰石(collagen-hydroxypatite, CHA)复合支架已被多种体外、体内和临床研究证明具有优良的生物相容性和促成骨潜能,随着三维(three-dimensional, 3D)打印技术在组织工程领域的发展,利用3D打印方法建造的骨支架展现出了巨大的临床潜力。本综述阐述了三维打印CHA复合支架的前沿技术和新进展,并介绍了3D打印CHA支架在口腔颌面骨再生修复方面的应用。
中图分类号:
程紫阳, 韩笑妍, 毛珂铭, 刘来奎, 梁薇薇. 三维打印羟基磷灰石-胶原蛋白支架在骨再生中的研究进展[J]. 口腔医学, 2025, 45(1): 75-80.
CHENG Ziyang, HAN Xiaoyan, MAO Keming, LIU Laikui, LIANG Weiwei. Advances in 3D printed hydroxyapatite-collagen scaffolds in bone regeneration[J]. Stomatology, 2025, 45(1): 75-80.
表1
利用3D打印的CHA支架在口腔颌面骨再生的临床应用"
作者及发表年份 | 支架成分 | 临床应用 | 对照组 | 评价 |
---|---|---|---|---|
Mozzati, 2017[ | RegenOss(富镁羟基磷灰石纳米晶体在Ⅰ型胶原纤维内成核) | 拔牙创植入 | 无 | RegenOss改善牙槽窝愈合,增加上皮化,其安全性得到证实,可能有止血性能 |
Casarez-Quintana, 2022[ | 80%异体HA微颗粒/20%糖交联猪Ⅰ型Col | 牙槽嵴植入 | 90%牛来源的异种移植颗粒/10%猪胶原基质 | 活骨能力明显高于对照,两组牙槽嵴隆起变化相似,均适合种植体植入 |
El-Chaar, 2016[ | 15% HA /85%β-TCP+贯穿整个产品的不溶性/可溶性胶原链载体 | 位点保存 | 无 | 40.25%活骨,10.38%残余移植物材料和49.25%骨髓出现,100%的种植体骨结合,能克服牙齿拔除后的牙槽骨吸收,保存或恢复天然的牙槽骨轮廓。 |
Cook, 2013[ | 70%交联的Ⅰ型牛胶原海绵+表面HA涂布+糖交联Ⅰ型Col可吸收膜 | 牙槽嵴保存 | 90%无机牛异种移植材料/10%猪胶原纤维结合+非交联猪Ⅰ型和Ⅲ型Col可吸收双层膜 | 活骨的百分比显著增加且高于对照组,没有检测到残余的移植材料证实一定的降解性 |
Trombelli, 2012[ | 胶原基质中的合成HA(S-HA) | 经牙槽嵴内上颌窦提升术 | 脱蛋白牛骨矿物质(DBBM) | 术后6个月窦提升程度(SL)和移植物根尖至种植体根尖的高度(aGH)显著高于对照,术后并发症和术后疼痛/不适有限 |
Vignesh, 2019[ | Col/HA+BMA | 颌面部囊性骨缺损 | Col/HA | 疼痛评分在术后一周、一个月显著低于对照,骨再生较早,但肿胀评分与对照相似 |
[1] |
Perić Kačarević Ž, Rider P, Alkildani S, et al. An introduction to bone tissue engineering[J]. Int J Artif Organs, 2020, 43(2):69-86.
doi: 10.1177/0391398819876286 pmid: 31544576 |
[2] |
Chacon EL, Bertolo MRV, de Guzzi Plepis AM, et al. Collagen-chitosan-hydroxyapatite composite scaffolds for bone repair in ovariectomized rats[J]. Sci Rep, 2023, 13(1):28.
doi: 10.1038/s41598-022-24424-x pmid: 36593236 |
[3] | Graziani G, Govoni M, Vivarelli L, et al. A comprehensive microstructural and compositional characterization of allogenic and xenogenic bone: Application to bone grafts and nanostructured biomimetic coatings[J]. Coatings, 2020, 10(6):522. |
[4] |
Zhang DW, Wu XW, Chen JD, et al. The development of collagen based composite scaffolds for bone regeneration[J]. Bioact Mater, 2018, 3(1):129-138.
doi: 10.1016/j.bioactmat.2017.08.004 pmid: 29744450 |
[5] | Calabrese G, Giuffrida R, Fabbi C, et al. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro[J]. PLoS One, 2016, 11(3):e0151181. |
[6] |
Koo Y, Lee H, Lim CS, et al. Highly porous multiple-cell-laden collagen/hydroxyapatite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2022, 222(Pt A):1264-1276.
doi: 10.1016/j.ijbiomac.2022.09.249 pmid: 36191782 |
[7] | Xu JT, Fahmy-Garcia S, Wesdorp MA, et al. Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: In vitro, ex vivo and in vivo evaluation[J]. J Funct Biomater, 2023, 14(2):111. |
[8] | Zuo YP, Li QW, Xiong QC, et al. Naringin release from a nano-hydroxyapatite/collagen scaffold promotes osteogenesis and bone tissue reconstruction[J]. Polymers, 2022, 14(16):3260. |
[9] |
Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: The evidence for their use[J]. Bone Joint J, 2013, 95-B(5):583-597.
doi: 10.1302/0301-620X.95B5.30286 pmid: 23632666 |
[10] | Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration[J]. J Mater Sci Mater Med, 2008, 19(8):2925-2932. |
[11] | Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536. |
[12] |
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review[J]. Acta Biomater, 2020, 113: 1-22.
doi: S1742-7061(20)30370-6 pmid: 32622053 |
[13] | Jones N. Science in three dimensions: The print revolution[J]. Nature, 2012, 487(7405):22-23. |
[14] | Koo Y, Kim GH. Bioprinted hASC-laden collagen/HA constructs with meringue-like macro/micropores[J]. Bioeng Transl Med, 2022, 7(3):e10330. |
[15] |
Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials, 2014, 35(13):4026-4034.
doi: 10.1016/j.biomaterials.2014.01.064 pmid: 24529628 |
[16] | Wu CA, Zhu YJ, Venkatesh A, et al. Optimization of freeform reversible embedding of suspended hydrogel microspheres for substantially improved three-dimensional bioprinting capabilities[J]. Tissue Eng Part C Methods, 2023, 29(3):85-94. |
[17] |
Gu ZM, Fu JZ, Lin H, et al. Development of 3D bioprinting: From printing methods to biomedical applications[J]. Asian J Pharm Sci, 2020, 15(5):529-557.
doi: 10.1016/j.ajps.2019.11.003 pmid: 33193859 |
[18] | Devillard R, Pagès E, Correa MM, et al. Cell patterning by laser-assisted bioprinting[J]. Methods Cell Biol, 2014, 119: 159-174. |
[19] |
Hakobyan D, Kerouredan O, Remy M, et al. Laser-assisted bioprinting for bone repair[J]. Methods Mol Biol, 2020, 2140: 135-144.
doi: 10.1007/978-1-0716-0520-2_8 pmid: 32207109 |
[20] | Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications[J]. Adv Healthc Mater, 2018, 7(8):e1701161. |
[21] | Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Sci Adv, 2015, 1(9):e1500758. |
[22] | Sun TZ, Wang JZ, Huang HG, et al. Low-temperature deposition manufacturing technology: A novel 3D printing method for bone scaffolds[J]. Front Bioeng Biotechnol, 2023, 11: 1222102. |
[23] | Lin KF, He S, Song Y, et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2016, 8(11):6905-6916. |
[24] | Kołodziejska B, Kaflak A, Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration-a review[J]. Materials, 2020, 13(7):1748. |
[25] | 李东. 低温3D打印技术联合冷冻干燥法制备SF/COL/nHA仿生骨组织工程支架及其性能的研究[D]. 天津: 天津医科大学, 2016. |
[26] | Lee J, Kim G. Calcium-deficient hydroxyapatite/collagen/platelet-rich plasma scaffold with controlled release function for hard tissue regeneration[J]. ACS Biomater Sci Eng, 2018, 4(1):278-289. |
[27] |
Li C, Xu XY, Gao J, et al. 3D printed scaffold for repairing bone defects in apical periodontitis[J]. BMC Oral Health, 2022, 22(1):327.
doi: 10.1186/s12903-022-02362-4 pmid: 35941678 |
[28] |
Coffin BD, Hudson AR, Lee A, et al. FRESH 3D bioprinting a ventricle-like cardiac construct using human stem cell-derived cardiomyocytes[J]. Methods Mol Biol, 2022, 2485: 71-85.
doi: 10.1007/978-1-0716-2261-2_5 pmid: 35618899 |
[29] |
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452):482-487.
doi: 10.1126/science.aav9051 pmid: 31371612 |
[30] | Shiwarski DJ, Hudson AR, Tashman JW, et al. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication[J]. APL Bioeng, 2021, 5(1):010904. |
[31] | Tashman JW, Shiwarski DJ, Coffin B, et al. In situ volumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography[J]. Biofabrication, 2022, 15(1):014102. |
[32] | Bliley J, Tashman J, Stang M, et al. FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes[J/OL]. Biofabrication, 2022, 14(2)[2024-05-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206822/pdf/nihms-1811816.pdf. doi:10.1088/1758-5090/ac58be. |
[33] | Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks[J]. Biofabrication, 2022, 14(3):034105. |
[34] | Lan XY, Liang Y, Erkut EJN, et al. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering[J]. FASEB J, 2021, 35(3):e21191. |
[35] | Chen X, Han SY, Wu WH, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics[J]. Small, 2022, 18(36):e2106824. |
[36] |
Montalbano G, Molino G, Fiorilli S, et al. Synthesis and incorporation of rod-like nano-hydroxyapatite into type Ⅰ collagen matrix: A hybrid formulation for 3D printing of bone scaffolds[J]. J Eur Ceram Soc, 2020, 40(11):3689-3697.
doi: 10.1016/j.jeurceramsoc.2020.02.018 |
[37] | Guo C, Wu JC, Zeng YM, et al. Construction of 3D bioprinting of HAP/collagen scaffold in gelation bath for bone tissue engineering[J]. Regen Biomater, 2023, 10: rbad067. |
[38] | Ghorbani F, Li DJ, Zhong ZY, et al. Bioprinting a cell-laden matrix for bone regeneration: A focused review[J]. J Appl Polym Sci, 2021, 138(8):e49888. |
[39] | Villa MM, Wang LP, Huang JP, et al. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells[J]. J Biomed Mater Res B Appl Biomater, 2015, 103(2):243-253. |
[40] | Genova T, Roato I, Carossa M, et al. Advances on bone substitutes through 3D bioprinting[J]. Int J Mol Sci, 2020, 21(19):7012. |
[41] | Scognamiglio C, Soloperto A, Ruocco G, et al. Bioprinting stem cells: Building physiological tissues one cell at a time[J]. Am J Physiol Cell Physiol, 2020, 319(3):C465-C480. |
[42] | Kara Özenler A, Distler T, Tihminlioglu F, et al. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering[J]. Biofabrication, 2023, 15(2):025012. |
[43] |
Johari B, Ahmadzadehzarajabad M, Azami M, et al. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds[J]. J Biomed Mater Res A, 2016, 104(7):1770-1778.
doi: 10.1002/jbm.a.35710 pmid: 26990815 |
[44] | Ciuffi S, Zonefrati R, Brandi ML. Adipose stem cells for bone tissue repair[J]. Clin Cases Miner Bone Metab, 2017, 14(2):217-226. |
[45] |
Niemeyer P, Fechner K, Milz S, et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma[J]. Biomaterials, 2010, 31(13):3572-3579.
doi: 10.1016/j.biomaterials.2010.01.085 pmid: 20153047 |
[46] | Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting[J]. Adv Healthc Mater, 2019, 8(7):e1801048. |
[47] | Vo TN, Tabata Y, Mikos AG. Effects of cellular parameters on thein vitro osteogenic potential of dual-gelling mesenchymal stem cell-laden hydrogels[J]. J Biomater Sci Polym Ed, 2016, 27(12):1277-1290. |
[48] |
Santos MI, Reis RL. Vascularization in bone tissue engineering: Physiology, current strategies, major hurdles and future challenges[J]. Macromol Biosci, 2010, 10(1):12-27.
doi: 10.1002/mabi.200900107 pmid: 19688722 |
[49] | Carulli C, Innocenti M, Brandi ML. Bone vascularization in normal and diseaseconditions[J]. Front Endocrinol, 2013, 4: 106. |
[50] | Kong ZY, Wang XH. Bioprinting technologies and bioinks for vascular model establishment[J]. Int J Mol Sci, 2023, 24(1):891. |
[51] | Niklason LE, Lawson JH. Bioengineered human blood vessels[J]. Science, 2020, 370(6513):eaaw8682. |
[52] | Bosch-Rué È, Díez-Tercero L, Delgado LM, et al. Biofabrication of collagen tissue-engineered blood vessels with direct co-axial extrusion[J]. Int J Mol Sci, 2022, 23(10):5618. |
[53] | Dikyol C, Altunbek M, Koc B. Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures[J]. J Mater Res, 2021, 36(19):3851-3864. |
[54] | Kérourédan O, Bourget JM, Rémy M, et al. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting[J]. J Mater Sci Mater Med, 2019, 30(2):28. |
[55] | Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration[J]. Biofabrication, 2019, 11(4):045002. |
[56] |
Koo YW, Lim CS, Darai A, et al. Shape-memory collagen scaffold combined with hyaluronic acid for repairing intervertebral disc[J]. Biomater Res, 2023, 27(1):26.
doi: 10.1186/s40824-023-00368-9 pmid: 36991502 |
[57] | Tibbits S. 4D printing: Multi-material shape change[J]. Archit Des, 2014, 84(1):116-121. |
[58] |
Wan ZQ, Zhang P, Liu YS, et al. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering[J]. Acta Biomater, 2020, 101: 26-42.
doi: S1742-7061(19)30717-2 pmid: 31672585 |
[59] | Sahafnejad-Mohammadi I, Karamimoghadam M, Zolfagharian A, et al. 4D printing technology in medical engineering: A narrative review[J]. J Braz Soc Mech Sci Eng, 2022, 44(6):233. |
[60] | Neen D, Noyes D, Shaw M, et al. Healos and bone marrow aspirate used for lumbar spine fusion: A case controlled study comparing healos with autograft[J]. Spine, 2006, 31(18):E636-E640. |
[61] |
Carter JD, Swearingen AB, Chaput CD, et al. Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate[J]. Spine J, 2009, 9(6):434-438.
doi: 10.1016/j.spinee.2008.11.004 pmid: 19111510 |
[62] | Kunakornsawat S, Kirinpanu A, Piyaskulkaew C, et al. A comparative study of radiographic results using HEALOS collagen-hydroxyapatite sponge with bone marrow aspiration versus local bone graft in the same patients undergoing posterolateral lumbar fusion[J]. Chotmaihet Thangphaet, 2013, 96(8):929-935. |
[63] | Ploumis A, Albert TJ, Brown Z, et al. Healos graft carrier with bone marrow aspirate instead of allograft as adjunct to local autograft for posterolateral fusion in degenerative lumbar scoliosis: A minimum 2-year follow-up study[J]. J Neurosurg Spine, 2010, 13(2):211-215. |
[64] |
Mozzati M, Gallesio G, Staiti G, et al. Socket preservation using a biomimetic nanostructured matrix and atraumatic surgical extraction technique[J]. J Craniofac Surg, 2017, 28(4):1042-1045.
doi: 10.1097/SCS.0000000000003496 pmid: 28178105 |
[65] | Fares A, Hardy A, Bohu Y, et al. The impact of bone graft type used to fill bone defects in patients undergoing ACL reconstruction with bone-patellar tendon-bone (BPTB) autograft on kneeling, anterior knee pain and knee functional outcomes[J]. Eur J Orthop Surg Traumatol, 2024, 34(1):181-190. |
[66] |
Casarez-Quintana A, Mealey BL, Kotsakis G, et al. Comparing the histological assessment following ridge preservation using a composite bovine-derived xenograft versus an alloplast hydroxyapatite-sugar cross-linked collagen matrix[J]. J Periodontol, 2022, 93(11):1691-1700.
doi: 10.1002/JPER.22-0149 pmid: 35661358 |
[67] |
El-Chaar ES. Clinical and histological evaluation of ceramic matrix in a collagen carrier for socket preservation in humans[J]. Implant Dent, 2016, 25(1):149-154.
doi: 10.1097/ID.0000000000000362 pmid: 26655328 |
[68] |
Cook DC, Mealey BL. Histologic comparison of healing following tooth extraction with ridge preservation using two different xenograft protocols[J]. J Periodontol, 2013, 84(5):585-594.
doi: 10.1902/jop.2012.120219 pmid: 22680300 |
[69] | Trombelli L, Franceschetti G, Rizzi A, et al. Minimally invasive transcrestal sinus floor elevation with graft biomaterials. A randomized clinical trial[J]. Clin Oral Implants Res, 2012, 23(4):424-432. |
[70] | Vignesh U, Mehrotra D, Howlader D, et al. Bone marrow aspirate in cystic maxillofacial bony defects[J]. J Craniofac Surg, 2019, 30(3):e247-e251. |
[1] | 李根, 王华, 谷妍. 数字化三维打印前方牵引联合快速扩缩矫治替牙期骨性Ⅲ类的临床效果研究[J]. 口腔医学, 2025, 45(1): 51-57. |
[2] | 张天翼, 郑义, 吕雯昊, 马宁. 双网络交联水凝胶在骨组织再生领域的研究进展[J]. 口腔医学, 2025, 45(1): 69-74. |
[3] | 丁成芳, 卡地里亚·吐尔逊江, 艾力麦尔旦·艾尼瓦尔, 木拉地力·买合木提, 地力胡马尔·库尔班, 王玲. 数字化导板在即刻自体牙移植术中的初步应用研究[J]. 口腔医学, 2024, 44(5): 381-385. |
[4] | 王涵, 胡建, 李林. 增减材混合制造无牙颌种植支架的精确性研究[J]. 口腔医学, 2024, 44(12): 917-922. |
[5] | 赵飘, 管晓燕, 刘建国, 向明丽, 肖琳琳. LIPUS的协同作用及在口腔中的运用[J]. 口腔医学, 2024, 44(10): 780-785. |
[6] | 朱昕妍, 靳牧涵, 严菁菁, 王美琪, 张一玲, 马俊青, 袁俊. MXene纳米材料在生物医学应用中促成骨的机制研究[J]. 口腔医学, 2024, 44(1): 75-80. |
[7] | 曹希萌, 沈荧怡, 胥春. 缺氧预处理间充质干细胞来源的外泌体在骨再生中作用的研究进展[J]. 口腔医学, 2023, 43(9): 844-848. |
[8] | 何修全,李玉山,水宇豪,刘堃. 条形自体块状骨联合GBR在水平骨增量中的应用研究[J]. 口腔医学, 2023, 43(5): 451-455. |
[9] | 李佳芙,吕红,周静,刘情,蒲奕名,卜鸿鹄,刘清辉,曲彬彬. 异种成型胶原骨引导种植体周围骨缺损再生的临床研究[J]. 口腔医学, 2023, 43(4): 322-326. |
[10] | 李菡,王柏翔,王慧明. 位点保存术在口腔种植中的研究进展[J]. 口腔医学, 2023, 43(4): 347-352. |
[11] | 张浩, 张新风, 祁雨晨, 胥加斌, 司亚萌. 数字化导板引导CGF联合Bio-Oss骨粉充填颌骨囊肿的临床研究[J]. 口腔医学, 2023, 43(10): 910-914. |
[12] | 许嘉宁, 金作林, 刘佳. 3D打印在口腔正畸领域的应用进展[J]. 口腔医学, 2023, 43(10): 925-929. |
[13] | 张茜, 王畅, 梁琛, 曲星源, 刘悦, 闫宝君, 王雷. 硫酸软骨素应用于骨修复材料中的研究进展[J]. 口腔医学, 2023, 43(1): 88-91. |
[14] | 陈艺菲,张辰玥,张璟岚,张滨婧,戎鑫,胡芝爱. 三维打印血管的研究进展[J]. 口腔医学, 2023, 43(1): 82-87. |
[15] | 邓磊, 雷雨晨, 陈岗, 王超, 黄海涛. 3D打印个性化钛网引导种植区骨再生的临床并发症研究[J]. 口腔医学, 2022, 42(3): 244-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||