[1] |
Puciło M, Puciło A, Safranow K, et al. The influence of age, sex, and tooth type on the anatomical relationship between tooth roots and the mandibular canal[J]. Imaging Sci Dent, 2021, 51(4): 373-382.
doi: 10.5624/isd.20210031
pmid: 34987997
|
[2] |
Komerik N, Muglali M, Tas B, et al. Difficulty of impacted mandibular third molar tooth removal: Predictive ability of senior surgeons and residents[J]. J Oral Maxillofac Surg, 2014, 72(6): 1062. e1-1062.e6.
|
[3] |
Mendes MLT, do Nascimento-Júnior EM, Reinheimer DM, et al. Efficacy of proteolytic enzyme bromelain on health outcomes after third molar surgery. Systematic review and meta-analysis of randomized clinical trials[J]. Med Oral Patol Oral Cir Bucal, 2019, 24(1): e61-e69.
|
[4] |
Xu GZ, Yang C, Fan XD, et al. Anatomic relationship between impacted third mandibular molar and the mandibular canal as the risk factor of inferior alveolar nerve injury[J]. Br J Oral MaxillofacSurg, 2013, 51(8): e215-219.
|
[5] |
Rytkönen K, Ventä I. Distance between mandibular canal and third molar root among 20-year-old subjects[J]. Clin Oral Investig, 2018, 22(7): 2505-2509.
|
[6] |
Su NC, van Wijk A, Berkhout E, et al. Predictive value of panoramic radiography for injury of inferior alveolar nerve after mandibular third molar surgery[J]. J Oral Maxillofac Surg, 2017, 75(4): 663-679.
|
[7] |
Reia VCB, de Toledo Telles-Araujo G, Peralta-Mamani M, et al. Diagnostic accuracy of CBCT compared to panoramic radiography in predicting IAN exposure: A systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25(8): 4721-4733.
|
[8] |
Bell GW. Use of dental panoramic tomographs to predict the relation between mandibular third molar teeth and the inferior alveolar nerve. Radiological and surgical findings, and clinical outcome[J]. Br J Oral Maxillofac Surg, 2004, 42(1): 21-27.
|
[9] |
Nyachhyon R, Joshi U, Mainali A, et al. Compression of the inferior alveolar canal by mandibular third molar among images taken from patients visiting dental imaging centres of kathmandu: A descriptive cross-sectional study[J]. JNMA J Nepal Med Assoc, 2022, 60(245): 26-30.
doi: 10.31729/jnma.7124
pmid: 35199669
|
[10] |
Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs[J]. Comput Methods Programs Biomed, 2017, 148: 1-11.
|
[11] |
Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Sci Rep, 2019, 9(1): 8495.
doi: 10.1038/s41598-019-44839-3
pmid: 31186466
|
[12] |
Bayrakdar IS, Orhan K, Akarsu S, et al. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs[J]. Oral Radiol, 2022, 38(4): 468-479.
|
[13] |
Weng S, Wersing H, Steil JJ, et al. Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions[J]. IEEE Trans Neural Netw, 2006, 17(4): 843-862.
|
[14] |
Sukegawa S, Yoshii K, Hara T, et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images[J]. Biomolecules, 2021, 11(6): 815.
|
[15] |
Chen H, Zhang KL, Lyu PJ, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films[J]. Sci Rep, 2019, 9(1): 3840.
doi: 10.1038/s41598-019-40414-y
pmid: 30846758
|
[16] |
Cha JY, Yoon HI, Yeo IS, et al. Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs[J]. J Clin Med, 2021, 10(5): 1009.
|
[17] |
Hou L, Chen CH, Wang SJ, et al. Multi-object detection method in construction machinery swarm operations based on the improved YOLOv4 model[J]. Sensors, 2022, 22(19): 7294.
|
[18] |
Ahmad MA, Ourak M, Gruijthuijsen C, et al. Deep learning-based monocular placental pose estimation: Towards collaborative robotics in fetoscopy[J]. Int J Comput Assist Radiol Surg, 2020, 15(9): 1561-1571.
doi: 10.1007/s11548-020-02166-3
pmid: 32350788
|
[19] |
Wang SD, Huang L, Jiang D, et al. Improved multi-stream convolutional block attention module for sEMG-based gesture recognition[J]. Front Bioeng Biotechnol, 2022, 10: 909023.
|
[20] |
Zhang Y, Liu CQ, Liu M, et al. Attention is all you need: Utilizing attention in AI-enabled drug discovery[J]. Brief Bioinform, 2023, 25(1): bbad467.
|
[21] |
Yi J, Liu X, Cheng S, et al. Multi-scale window transformer for cervical cytopathology image recognition[J]. Comput Struct Biotechnol J, 2024, 24: 314-321.
|
[22] |
Hu JF, Sun JX, Lin ZH, et al. APANet: Auto-path aggregation for future instance segmentation prediction[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(7): 3386-3403.
|
[23] |
Wang Y, Chen XQ, Li JQ, et al. Convolutional block attention module-multimodal feature-fusion action recognition: Enabling miner unsafe action recognition[J]. Sensors (Basel), 2024, 24(14): 4557.
|
[24] |
Papanastasiou G, Dikaios N, Huang JH, et al. Is attention all you need in medical image analysis? a review[J]. IEEE J Biomed Health Inform, 2024, 28(3): 1398-1411.
|
[25] |
Wang WJ, Li XY, Ren HL, et al. Chinese clinical named entity recognition from electronic medical records based on multisemantic features by using robustly optimized bidirectional encoder representation from transformers pretraining approach whole word masking and convolutional neural networks: Model development and validation[J]. JMIR Med Inform, 2023, 11: e44597.
|
[26] |
Li XM, Chen H, Qi XJ, et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Trans Med Imaging, 2018, 37(12): 2663-2674.
|
[27] |
Masood M, Masood Y, Newton JT. The clustering effects of surfaces within the tooth and teeth within individuals[J]. J Dent Res, 2015, 94(2): 281-288.
doi: 10.1177/0022034514559408
pmid: 25421840
|
[28] |
Buyuk C, Akkaya N, Arsan B, et al. A fused deep learning architecture for the detection of the relationship between the mandibular third molar and the mandibular canal[J]. Diagnostics (Basel), 2022, 12(8): 2018.
|
[29] |
Yang Y, Bao DY, Ni C, et al. Three-dimensional positional relationship between impacted mandibular third molars and the mandibular canal[J]. BMC Oral Health, 2023, 23(1): 831.
doi: 10.1186/s12903-023-03548-0
pmid: 37924035
|