[1] |
Silva RCS, Agrelli A, Andrade AN, et al. Titanium dental implants: An overview of applied nanobiotechnology to improve biocompatibility and prevent infections[J]. Materials, 2022, 15(9):3150.
|
[2] |
Qu Q, Wang L, Chen YJ, et al. Corrosion behavior of titanium in artificial saliva by lactic acid[J]. Materials, 2014, 7(8):5528-5542.
doi: 10.3390/ma7085528
pmid: 28788143
|
[3] |
Mareci D, Chelariu R, Dan I, et al. Corrosion behaviour of β-Ti20Mo alloy in artificial saliva[J]. J Mater Sci Mater Med, 2010, 21(11):2907-2913.
|
[4] |
Bodunrin MO, Chown LH, van der Merwe JW, et al. Corrosion behavior of titanium alloys in acidic and saline media: Role of alloy design, passivation integrity, and electrolyte modification[J]. Corros Rev, 2020, 38(1):25-47.
|
[5] |
Kunrath MF, do N Gerhardt M. Trans-mucosal platforms for dental implants: Strategies to induce muco-integration and shield peri-implant diseases[J]. Dent Mater, 2023, 39(9):846-859.
doi: 10.1016/j.dental.2023.07.009
pmid: 37537095
|
[6] |
Wang Z, Zou Y, Li YW, et al. Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics[J]. Small, 2020, 16(18):e1907042.
|
[7] |
Madhurakkat Perikamana SK, Lee J, Lee YB, et al. Materials from mussel-inspired chemistry for cell and tissue engineering applications[J]. Biomacromolecules, 2015, 16(9):2541-2555.
doi: 10.1021/acs.biomac.5b00852
pmid: 26280621
|
[8] |
Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. The chemistry behind catechol-based adhesion[J]. Angew Chem Int Ed Engl, 2019, 58(3):696-714.
|
[9] |
Chen W, Zhu WQ, Qiu J. Impact of exogenous metal ions on peri-implant bone metabolism:A review[J]. RSC Adv, 2021, 11(22):13152-13163.
doi: 10.1039/d0ra09395e
pmid: 35423842
|
[10] |
Hu YD, Zhou HL, Liu TT, et al. Construction of mussel-inspired dopamine-Zn2+coating on titanium oxide nanotubes to improve hemocompatibility, cytocompatibility, and antibacterial activity[J]. Front Bioeng Biotechnol, 2022, 10: 884258.
|
[11] |
Ding XY, Zhang YM, Ling JY, et al. Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO2nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature[J]. Colloids Surf B Biointerfaces, 2018, 171: 101-109.
|
[12] |
Qiu J, Yu WQ, Zhang FQ, et al. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing[J]. Eur J Oral Sci, 2011, 119(1):93-101.
doi: 10.1111/j.1600-0722.2011.00791.x
pmid: 21244518
|
[13] |
Apaza-Bedoya K, Tarce M, Benfatti CAM, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review[J]. J Periodontal Res, 2017, 52(6):946-954.
doi: 10.1111/jre.12469
pmid: 28612506
|
[14] |
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium wear of dental implants from placement, under loading and maintenance protocols[J]. Int J Mol Sci, 2021, 22(3):1067.
|
[15] |
Yang J, Cohen Stuart MA, Kamperman M. Jack of all trades:Versatile catechol crosslinking mechanisms[J]. Chem Soc Rev, 2014, 43(24):8271-8298.
|
[16] |
Sever MJ, Weisser JT, Monahan J, et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive[J]. Angew Chem Int Ed Engl, 2004, 43(4):448-450.
|
[17] |
Rezk AI, Ramachandra Kurup Sasikala A, Nejad AG, et al. Strategic design of a Mussel-inspired in situ reduced Ag/Au-Nanoparticle Coated Magnesium Alloy for enhanced viability, antibacterial property and decelerated corrosion rates for degradable implant Applications[J]. Sci Rep, 2019, 9(1):117.
|
[18] |
Wang X, Pan LS, Zheng A, et al. Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment[J]. Bioact Mater, 2022, 24: 236-250.
|
[19] |
Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430.
doi: 10.1126/science.1147241
pmid: 17947576
|
[20] |
Hu HY, Yu B, Ye Q, et al. Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes[J]. Carbon, 2010, 48(8):2347-2353.
|
[21] |
Mrówczyński R, Turcu R, Leostean C, et al. New versatile polydopamine coated functionalized magnetic nanoparticles[J]. Mater Chem Phys, 2013, 138(1):295-302.
|
[22] |
Yu J, Wei W, Menyo MS, et al. Adhesion of mussel foot protein-3 to TiO2 surfaces: The effect of pH[J]. Biomacromolecules, 2013, 14(4):1072-1077.
|
[23] |
Li LY, Cui LY, Zeng RC, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys: A review[J]. Acta Biomater, 2018, 79: 23-36.
|
[24] |
Zhang F, Zhang Q, Li XY, et al. Mussel-inspired dopamine-CuIIcoatings for sustained in situ generation of nitric oxide for prevention of stent thrombosis and restenosis[J]. Biomaterials, 2019, 194: 117-129.
doi: S0142-9612(18)30855-X
pmid: 30590241
|
[25] |
Hou Y, Deng X, Xie CM. Biomaterial surface modification for underwater adhesion[J]. Smart Mater Med, 2020, 1: 77-91.
|
[26] |
Liu DQ, Xi YJ, Yu SZ, et al. A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes[J]. Biomaterials, 2023, 293: 121957.
|
[27] |
Sever MJ, Wilker JJ. Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide[J]. Dalton Trans, 2006, 14(6):813-822.
|