Stomatology ›› 2024, Vol. 44 ›› Issue (7): 551-550.doi: 10.13591/j.cnki.kqyx.2024.07.012
• Review • Previous Articles Next Articles
WANG Yue,LI Hangyun,TANG Wanyi,WU Junhua()
Received:
2023-11-07
Online:
2024-07-28
Published:
2024-07-15
CLC Number:
WANG Yue, LI Hangyun, TANG Wanyi, WU Junhua. Application of machine learning in restoration of dental defect[J]. Stomatology, 2024, 44(7): 551-550.
[1] |
Lawrence DR, Palacios-González C, Harris J. Artificial intelligence[J]. Camb Q Healthc Ethics, 2016, 25(2):250-261.
doi: 10.1017/S0963180115000559 pmid: 26957450 |
[2] | Steels L, Lopezde Mantaras R. The Barcelona declaration for the proper development and usage of artificial intelligence in Europe[J]. AI Commun, 2018, 31(6):485-494. |
[3] | Montani S, Striani M. Artificial intelligence in clinical decision support: A focused literature survey[J]. Yearb MedInform, 2019, 28(1):120-127. |
[4] | Chau RCW, Thu KM, Hsung RTC, et al. Teeth reconstruction using artificial intelligence: Trends, perspectives, and prospects[J]. J Calif Dent Assoc, 2023, 51(1):2199910. |
[5] |
Park WJ, Park JB. History and application of artificial neural networks in dentistry[J]. Eur J Dent, 2018, 12(4):594-601.
doi: 10.4103/ejd.ejd_325_18 pmid: 30369809 |
[6] | Shehab M, Abualigah L, Shambour Q, et al. Machine learning in medical applications: A review of state-of-the-art methods[J]. Comput Biol Med, 2022, 145: 105458. |
[7] | Mirza M, Osindero S. Conditional generative adversarial nets[DB/L]. DOI:10.48550/arXiv.1411.1784. |
[8] | 尹来国, 孙仁诚, 邵峰晶, 等. 多模式生成对抗网络[J]. 计算机应用研究, 2022, 39(6):1689-1693. |
[9] |
Shan T, TayFR, Gu L. Application of artificial intelligence in dentistry[J]. J Dent Res, 2021, 100(3):232-244.
doi: 10.1177/0022034520969115 pmid: 33118431 |
[10] | Aminoshariae A, Kulild J, Nagendrababu V. Artificialintelligence in endodontics: Current applications and future directions[J]. J Endod, 2021, 47(9):1352-1357. |
[11] | Fatima A, Shafi I, Afzal H, et al. Advancements in dentistry with artificial intelligence: Current clinical applications and future perspectives[J]. Healthcare, 2022, 10(11):2188. |
[12] | Revilla-León M, Gómez-Polo M, Vyas S, et al. Artificial intelligence applications in implant dentistry: A systematic review[J]. J Prosthet Dent, 2023, 129(2):293-300. |
[13] | Xiao DQ, Lian CF, Deng H, et al. Estimating reference bony shape models for orthognathic surgical planning using 3D point-cloud deep learning[J]. IEEE J Biomed Health Inform, 2021, 25(8):2958-2966. |
[14] | 俞懿强, 刘伟才. 口腔固定修复全数字化流程的临床应用现状及问题[J]. 中华口腔医学杂志, 2023, 58(5):398-403. |
[15] |
Blatz MB, Conejo J. The Current state of chairside digital dentistry and materials[J]. Dent Clin North Am, 2019, 63(2):175-197.
doi: S0011-8532(18)30091-0 pmid: 30825985 |
[16] |
Mehl A, Blanz V. New procedure for fully automatic occlusal surface reconstruction by means of a biogeneric tooth model[J]. Int J Comput Dent, 2005, 8(1):13-25.
pmid: 15892521 |
[17] |
Bohner LOL, Neto PT, Ahmed AS, et al. CEREC chairside system to register and design the occlusion in restorative dentistry: A systematic literature review[J]. J Esthet Restor Dent, 2016, 28(4):208-220.
doi: 10.1111/jerd.12226 pmid: 27312653 |
[18] | Ferraris F. Posterior indirect adhesive restorations (PIAR):Preparation designs and adhesthetics clinical protocol[J]. Int J Esthet Dent, 2017, 12(4):482-502. |
[19] | Tian SK, Wang MH, Yuan FL, et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imaging, 2021, 40(9):2415-2427. |
[20] |
Farook TH, Ahmed S, Jamayet NB, et al. Computer-aided design and 3-dimensional artificial/convolutional neural network for digital partial dental crown synthesis and validation[J]. Sci Rep, 2023, 13(1):1561.
doi: 10.1038/s41598-023-28442-1 pmid: 36709380 |
[21] | Hwang JJ, Azernikov S, Efros AA, et al. Learning beyond human expertise with generative models for dental restorations[M]. arXiv:1804.00064( 2018). |
[22] | 袁福来, 戴宁, 田素坤, 等. 采用条件生成式对抗网络的缺损牙全冠修复技术[J]. 计算机辅助设计与图形学学报, 2019, 31(12):2113-2120. |
[23] | Yuan FL, Dai N, Tian SK, et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks[J]. Int J Numer Method Biomed Eng, 2020, 36(5):e3321. |
[24] | Tian SK, Huang RK, Li ZY, et al. A dual discriminator adversarial learning approach for dental occlusal surface reconstruction[J]. J Healthc Eng, 2022, 2022: 1933617. |
[25] | Tian SK, Wang MH, Dai N, et al. DCPR-GAN: Dental crown prosthesis restoration using two-stage generative adversarial networks[J]. IEEE J Biomed Health Inform, 2022, 26(1):151-160. |
[26] | Isola P, Zhu JY, Zhou TH, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE ConferenceonComputer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5967-5976. |
[27] | Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[M]. arXiv, 2016. |
[28] | Wu JJ, Zhang CK, Xue TF, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. December 5-10, 2016, Barcelona, Spain. New York: ACM, 2016: 82-90. |
[29] | Chau RCW, Hsung RTC, McGrath C, et al. Accuracy of artificial intelligence-designed single-molar dental prostheses: A feasibility study[J]. J Prosthet Dent, 2023: S0022 -S3913(22)00764-8. |
[30] | Lee YC, Lee C, Shim JS, et al. Comparison between occlusal errors of single posterior crowns adjusted using patient specific motion or conventional methods[J]. Appl Sci, 2020, 10(24):9140. |
[31] | Ding H, Cui ZM, Maghami E, et al. Morphology and mechanical performance of dental crown designed by 3D-DCGAN[J]. Dent Mater, 2023, 39(3):320-332. |
[32] | 中华口腔医学会口腔修复学专业委员会. 椅旁计算机辅助设计与辅助制作全瓷修复技术指南[J]. 中华口腔医学杂志, 2022, 57(10):992-996. |
[33] |
Feng Y, Tao BX, Fan JC, et al. 3D reconstruction for maxillary anterior tooth crown based on shape and pose estimation networks[J]. Int J Comput Assist Radiol Surg, 2023, 18(8):1405-1416.
doi: 10.1007/s11548-023-02841-1 pmid: 36754949 |
[34] |
Sadowsky SJ. An overview of treatment considerations for esthetic restorations: A review of the literature[J]. J Prosthet Dent, 2006, 96(6):433-442.
doi: 10.1016/j.prosdent.2006.09.018 pmid: 17174661 |
[35] |
Tabatabaian F, Beyabanaki E, Alirezaei P, et al. Visual and digital tooth shade selection methods, related effective factors and conditions, and their accuracy and precision: A literature review[J]. J Esthet Restor Dent, 2021, 33(8):1084-1104.
doi: 10.1111/jerd.12816 pmid: 34498789 |
[36] |
Dagg H, O'Connell B, Claffey N, et al. The influence of some different factors on the accuracy of shade selection[J]. J Oral Rehabil, 2004, 31(9):900-904.
doi: 10.1111/j.1365-2842.2004.01310.x pmid: 15369473 |
[37] |
Wei JQ, Peng MD, Li Q, et al. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model[J]. J Prosthodont, 2018, 27(8):775-783.
doi: 10.1111/jopr.12561 pmid: 27860023 |
[38] | Kim M, Kim B, Park B, et al. A digital shade-matching device for dental color determination using the support vector machine algorithm[J]. Sensors, 2018, 18(9):3051. |
[39] | Chen SL, Zhou HS, Chen TY, et al. Dental shade matching method based on hue, saturation, value color model with machine learning and fuzzy decision[J]. Sens Mater, 2020, 32(10):3185. |
[40] | Wanna Y, Wiratchawa K, Leenaracharoongruang R, et al. DentShadeAI: a framework for automatic dental shade matching through mobile phone camera[C]// 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). Phuket, Thailand. IEEE, 2022: 282-285. |
[41] |
Jahangiri L, Wahlers C, Hittelman E, et al. Assessment of sensitivity and specificity of clinical evaluation of cast restoration marginal accuracy compared to stereomicroscopy[J]. J Prosthet Dent, 2005, 93(2):138-142.
doi: 10.1016/j.prosdent.2004.11.007 pmid: 15674223 |
[42] |
Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques[J]. J Prosthet Dent, 2018, 119(4):545-551.
doi: S0022-3913(17)30488-2 pmid: 28967399 |
[43] |
Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics:A systematic review[J]. BMC Oral Health, 2017, 17(1):124.
doi: 10.1186/s12903-017-0415-0 pmid: 28927393 |
[44] | Mai HN, Han JS, Kim HS, et al. Reliability of automatic finish line detection for tooth preparation in dental computer-aided software[J]. J Prosthodont Res, 2023, 67(1):138-143. |
[45] | Zhang B, Dai N, Tian SK, et al. The extraction method of tooth preparation margin line based on S-Octree CNN[J]. Int J Numer Method Biomed Eng, 2019, 35(10):e3241. |
[46] | 张贝, 戴宁, 田素坤, 等. 结合稀疏八叉树卷积神经网络的牙齿预备体颈缘线提取方法[J]. 计算机辅助设计与图形学学报, 2019, 31(12):2129-2135. |
[47] | Takahashi T, Nozaki K, Gonda T, et al. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous Arches using a convolutional neural network[J]. J Prosthodont Res, 2021, 65(1):115-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||