[1] |
Arweiler NB, Netuschil L. The oral microbiota[M]//Microbiota of the Human Body. Cham: Springer, 2016: 45-60.
|
[2] |
Wade WG. The oral microbiome in health and disease[J]. Pharmacol Res, 2013, 69(1): 137-143.
doi: 10.1016/j.phrs.2012.11.006
pmid: 23201354
|
[3] |
Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome[J]. J Bacteriol, 2010, 192(19): 5002-5017.
doi: 10.1128/JB.00542-10
pmid: 20656903
|
[4] |
Read E, Curtis MA, Neves JF. The role of oral bacteria in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(10): 731-742.
doi: 10.1038/s41575-021-00488-4
pmid: 34400822
|
[5] |
Priyamvara A, Dey AK, Bandyopadhyay D, et al. Periodontal inflammation and the risk of cardiovascular disease[J]. Curr Atheroscler Rep, 2020, 22(7): 28.
doi: 10.1007/s11883-020-00848-6
pmid: 32514778
|
[6] |
Sureda A, Daglia M, Argüelles Castilla S, et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome?[J]. Pharmacol Res, 2020, 151: 104582.
|
[7] |
Matsha TE, Prince Y, Davids S, et al. Oral microbiome signatures in diabetes mellitus and periodontal disease[J]. J Dent Res, 2020, 99(6): 658-665.
doi: 10.1177/0022034520913818
pmid: 32298191
|
[8] |
Perricone C, Ceccarelli F, Saccucci M, et al. Porphyromonas gingivalis and rheumatoid arthritis[J]. Curr Opin Rheumatol, 2019, 31(5): 517-524.
doi: 10.1097/BOR.0000000000000638
pmid: 31268867
|
[9] |
Kawasaki M, Ikeda Y, Ikeda E, et al. Oral infectious bacteria in dental plaque and saliva as risk factors in patients with esophageal cancer[J]. Cancer, 2021, 127(4): 512-519.
doi: 10.1002/cncr.33316
pmid: 33156979
|
[10] |
Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases[J]. Int J Oral Sci, 2022, 14(1): 14.
doi: 10.1038/s41368-022-00163-7
pmid: 35236828
|
[11] |
Pahlow S, Meisel S, Cialla-May D, et al. Isolation and identification of bacteria by means of Raman spectroscopy[J]. Adv Drug Deliv Rev, 2015, 89: 105-120.
|
[12] |
Liu Y, Zhou HB, Hu ZW, et al. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review[J]. Biosens Bioelectron, 2017, 94: 131-140.
doi: S0956-5663(17)30119-7
pmid: 28262610
|
[13] |
Raman CV, Krishnan KS. A new type of secondary radiation[J]. Nature, 1928, 121: 501-502.
|
[14] |
Zhang YW, Ren L, Wang Q, et al. Raman spectroscopy: A potential diagnostic tool for oral diseases[J]. Front Cell Infect Microbiol, 2022, 12: 775236.
|
[15] |
刘坤香, 刘博, 薛莹, 等. 拉曼光谱检测微生物的研究方法和进展[J]. 微生物学报, 2023, 63(5): 1833-1849.
|
[16] |
Choo-Smith LP, Edwards HGM, Endtz HP, et al. Medical applications of Raman spectroscopy: From proof of principle to clinical implementation[J]. Biopolymers, 2002, 67(1): 1-9.
pmid: 11842408
|
[17] |
Dai YX, Li WX, Wang L, et al. Correlation and difference between Raman spectral characteristic and feature evaluation for leukocytes and tumor cells[J]. Appl Spectrosc, 2021, 75(12): 1516-1525.
|
[18] |
Bi XH, Walsh A, Mahadevan-Jansen A, et al. Development of spectral markers for the discrimination of ulcerative colitis and Crohn’s disease using Raman spectroscopy[J]. Dis Colon Rectum, 2011, 54(1): 48-53.
|
[19] |
MacRitchie N, Grassia G, Noonan J, et al. Molecular imaging of atherosclerosis: Spotlight on Raman spectroscopy and surface-enhanced Raman scattering[J]. Heart, 2018, 104(6): 460-467.
doi: 10.1136/heartjnl-2017-311447
pmid: 29061690
|
[20] |
Zheng QF, Li JY, Yang L, et al. Raman spectroscopy as a potential diagnostic tool to analyse biochemical alterations in lung cancer[J]. Analyst, 2020, 145(2): 385-392.
doi: 10.1039/c9an02175b
pmid: 31844853
|
[21] |
Haka AS, Volynskaya Z, Gardecki JA, et al. Diagnosing breast cancer using Raman spectroscopy: Prospective analysis[J]. J Biomed Opt, 2009, 14(5): 054023.
|
[22] |
Noothalapati H, Iwasaki K, Yamamoto T. Non-invasive diagnosis of colorectal cancer by Raman spectroscopy: Recent developments in liquid biopsy and endoscopy approaches[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 258: 119818.
|
[23] |
Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Sci Transl Med, 2015, 7(274): 274ra19.
|
[24] |
Schleusener J, Gluszczynska P, Reble C, et al. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy[J]. Exp Dermatol, 2015, 24(10): 767-772.
doi: 10.1111/exd.12768
pmid: 26010742
|
[25] |
余成, 高丽, 李春明. 拉曼光谱在口腔诊疗中的研究进展[J]. 口腔医学, 2022, 42(4): 377-380.
|
[26] |
Cordero E, Latka I, Matthäus C, et al. In-vivo Raman spectroscopy: From basics to applications[J]. J Biomed Opt, 2018, 23(7): 1-23.
doi: 10.1117/1.JBO.23.7.071210
pmid: 29956506
|
[27] |
Robert B. Resonance Raman spectroscopy[J]. Photosynth Res, 2009, 101(2): 147-155.
|
[28] |
Lin T, Song YL, Liao J, et al. Applications of surface-enhanced Raman spectroscopy in detection fields[J]. Nanomedicine, 2020, 15(30): 2971-2989.
|
[29] |
Mcaughtrie S, Faulds K, Graham D. Surface enhanced Raman spectroscopy(SERS): Potential applications for disease detection and treatment[J]. J Photochem Photobiol C, 2014, 21: 40-53.
|
[30] |
Craig AP, Franca AS, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety[J]. Annu Rev Food Sci Technol, 2013, 4: 369-380.
|
[31] |
Shanmugam K, Sarveswari HB, Udayashankar A, et al. Guardian genes ensuring subsistence of oral Streptococcus mutans[J]. Crit Rev Microbiol, 2020, 46(4): 475-491.
doi: 10.1080/1040841X.2020.1796579
pmid: 32720594
|
[32] |
Zhu B, MacLeod LC, Kitten T, et al. Streptococcus sanguinis biofilm formation & interaction with oral pathogens[J]. Future Microbiol, 2018, 13(8): 915-932.
|
[33] |
Gieroba B, Krysa M, Wojtowicz K, et al. The FT-IR and Raman spectroscopies as tools for biofilm characterization created by cariogenic Streptococci[J]. Int J Mol Sci, 2020, 21(11): 3811.
|
[34] |
Beier BD, Quivey RG, Berger AJ. Identification of different bacterial species in biofilms using confocal Raman microscopy[J]. J Biomed Opt, 2010, 15(6): 066001.
|
[35] |
Zhu QY, Quivey RG Jr, Berger AJ. Raman spectroscopic measurement of relative concentrations in mixtures of oral bacteria[J]. Appl Spectrosc, 2007, 61(11): 1233-1237.
doi: 10.1366/000370207782597021
pmid: 18028703
|
[36] |
Stuart CH, Schwartz SA, Beeson TJ, et al. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment[J]. J Endod, 2006, 32(2): 93-98.
|
[37] |
马玉莹, 芦昕, 张利娟, 等. 基于重水拉曼技术评价次氯酸钠对粪肠球菌抑菌效能的研究[J]. 华西口腔医学杂志, 2022, 40(1): 86-92.
|
[38] |
李姗姗, 孙雁斐, 郭艺, 等. 基于单细胞拉曼技术的口腔病原微生物快速鉴别研究[J]. 口腔医学研究, 2021, 37(9): 794-799.
doi: 10.13701/j.cnki.kqyxyj.2021.09.006
|
[39] |
Wasfi R, Abd El-Rahman OA, Zafer MM, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans[J]. J Cell Mol Med, 2018, 22(3): 1972-1983.
|
[40] |
Bud ES, Bica CI, Stoica OE, et al. Observational study regarding the relationship between nutritional status, dental caries, mutans Streptococci, and Lactobacillus bacterial colonies[J]. Int J Environ Res Public Health, 2021, 18(7): 3551.
|
[41] |
Wen ZT, Huang XC, Ellepola K, et al. Lactobacilli and human dental caries: More than mechanical retention[J]. Microbiology, 2022, 168(6): 001196.
|
[42] |
Colniţă A, Dina NE, Leopold N, et al. Characterization and discrimination of gram-positive bacteria using Raman spectroscopy with the aid of principal component analysis[J]. Nanomaterials, 2017, 7(9): 248.
|
[43] |
Akanny E, Bonhommé A, Commun C, et al. Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy[J]. Anal Bioanal Chem, 2019, 411(21): 5563-5576.
doi: 10.1007/s00216-019-01938-4
pmid: 31209547
|
[44] |
Reyes L. Porphyromonas gingivalis[J]. Trends Microbiol, 2021, 29(4): 376-377.
doi: 10.1016/j.tim.2021.01.010
pmid: 33546976
|
[45] |
Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: Major periodontopathic pathogen overview[J]. J Immunol Res, 2014, 2014: 476068.
|
[46] |
Witkowska E, Łasica AM, Niciński K, et al. In search of spectroscopic signatures of periodontitis: A SERS-based magnetomicrofluidic sensor for detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans[J]. ACS Sens, 2021, 6(4): 1621-1635.
|
[47] |
Zhang J, Liu YP, Li HX, et al. Discrimination of periodontal pathogens using Raman spectroscopy combined with machine learning algorithms[J]. J Innov Opt Health Sci, 2022, 15(3): 2240001.
|
[48] |
Brennan CA, Garrett WS. Fusobacterium nucleatum-symbiont, opportunist and oncobacterium[J]. Nat Rev Microbiol, 2019, 17(3): 156-166.
|
[49] |
Alon-Maimon T, Mandelboim O, Bachrach G. Fusobacterium nucleatum and cancer[J]. Periodontol 2000, 2022, 89(1): 166-180.
doi: 10.1111/prd.12426
pmid: 35244982
|
[50] |
Kriem LS, Wright K, Ccahuana-Vasquez RA, et al. Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models[J]. PLoS One, 2020, 15(5): e0232912.
|
[51] |
Kawashima J, Nakajo K, Washio J, et al. Fluoride-sensitivity of growth and acid production of oral Actinomyces: Comparison with oral Streptococcus[J]. Microbiol Immunol, 2013, 57(12): 797-804.
doi: 10.1111/1348-0421.12098
pmid: 24102761
|
[52] |
Kriem LS, Wright K, Ccahuana-Vasquez RA, et al. Mapping of a subgingival dual-species biofilm model using confocal Raman microscopy[J]. Front Microbiol, 2021, 12: 729720.
|
[53] |
Zhao HM, Zheng DW, Wang HQ, et al. In situ collection and rapid detection of pathogenic bacteria using a flexible SERS platform combined with a portable Raman spectrometer[J]. Int J Mol Sci, 2022, 23(13): 7340.
|