Stomatology ›› 2023, Vol. 43 ›› Issue (1): 88-91.doi: 10.13591/j.cnki.kqyx.2023.01.015
• Summary • Previous Articles Next Articles
ZHANG Qian1,WANG Chang1,LIANG Chen1,QU Xingyuan1,LIU Yue1,YAN Baojun2,WANG Lei1()
Revised:
2022-03-28
Online:
2023-01-28
Published:
2023-01-11
Contact:
WANG Lei
E-mail:wang_lei99@jlu.edu.cn
CLC Number:
ZHANG Qian, WANG Chang, LIANG Chen, QU Xingyuan, LIU Yue, YAN Baojun, WANG Lei. Progress of research on application of chondroitin sulfate in osteogenic repair materials[J]. Stomatology, 2023, 43(1): 88-91.
[1] | 韩倩倩, 赵君, 王苗苗, 等. 组织工程产品用种子细胞的质量控制与标准化[J]. 组织工程与重建外科杂志, 2020, 16(4):324-327. |
[2] |
Li YM, Wu JY, Jiang J, et al. Chondroitin sulfate-polydopamine modified polyethylene terephthalate with extracellular matrix-mimetic immunoregulatory functions for osseointegration[J]. J Mater Chem B, 2019, 7(48):7756-7770.
doi: 10.1039/C9TB01984G |
[3] |
Gavva C, Patel K, Kudre T, et al. Glycosaminoglycans from fresh water fish processing discard-Isolation, structural characterization, and osteogenic activity[J]. Int J Biol Macromol, 2020, 145:558-567.
doi: 10.1016/j.ijbiomac.2019.12.189 |
[4] |
Ida-Yonemochi H, Morita W, Sugiura N, et al. Craniofacial abnormality with skeletal dysplasia in mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase-1[J]. Sci Rep, 2018, 8(1):17134.
doi: 10.1038/s41598-018-35412-5 pmid: 30459452 |
[5] |
Yang J, Shen MY, Wen HL, et al. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate[J]. Carbohydr Polym, 2020, 230:115650.
doi: 10.1016/j.carbpol.2019.115650 |
[6] |
Niu QF, Li GY, Li C, et al. Two different fucosylated chondroitin sulfates:Structural elucidation, stimulating hematopoiesis and immune-enhancing effects[J]. Carbohydr Polym, 2020, 230:115698.
doi: 10.1016/j.carbpol.2019.115698 |
[7] |
Ustyuzhanina NE, Bilan MI, Panina EG, et al. Structure and anti-inflammatory activity of a new unusual fucosylated chondroitin sulfate from Cucumaria djakonovi[J]. Mar Drugs, 2018, 16(10):389.
doi: 10.3390/md16100389 |
[8] |
Zhu WM, Ji Y, Wang Y, et al. Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage[J]. Carbohydr Polym, 2018, 196:398-404.
doi: 10.1016/j.carbpol.2018.05.047 |
[9] |
Singh BN, Veeresh V, Mallick SP, et al. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering[J]. Int J Biol Macromol, 2019, 133:817-830.
doi: S0141-8130(18)37309-4 pmid: 31002908 |
[10] |
Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, et al. Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis:A systematic review and meta-analysis of randomized placebo-controlled trials[J]. Rheumatol Int, 2018, 38(8):1413-1428.
doi: 10.1007/s00296-018-4077-2 pmid: 29947998 |
[11] |
Volpi N. Chondroitin sulfate safety and quality[J]. Molecules, 2019, 24(8):1447.
doi: 10.3390/molecules24081447 |
[12] |
Anjum F, Lienemann PS, Metzger S, et al. Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation[J]. Biomaterials, 2016, 87:104-117.
doi: S0142-9612(16)00070-3 pmid: 26914701 |
[13] |
Andrews S, Cheng A, Stevens H, et al. Chondroitin sulfate glycosaminoglycan scaffolds for cell and recombinant protein-based bone regeneration[J]. Stem Cells Transl Med, 2019, 8(6):575-585.
doi: 10.1002/sctm.18-0141 |
[14] |
Korotkyi O, Huet A, Dvorshchenko K, et al. Probiotic composi-tion and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis[J]. Probiotics Antimicrob Proteins, 2021, 13(4):1018-1032.
doi: 10.1007/s12602-020-09735-7 |
[15] |
Tak PP, Firestein GS. NF-kappaB: A key role in inflammatory diseases[J]. J Clin Invest, 2001, 107(1):7-11.
doi: 10.1172/JCI11830 pmid: 11134171 |
[16] | 任光辉. 硫酸软骨素A促进成骨的动物实验研究[D]. 济南: 山东大学, 2012. |
[17] |
Li YM, Guo XM, Dong SK, et al. A triple-coated ligament graft to facilitate ligament-bone healing by inhibiting fibrogenesis and promoting osteogenesis[J]. Acta Biomater, 2020, 115:160-175.
doi: S1742-7061(20)30451-7 pmid: 32791348 |
[18] |
Kim HD, Lee EA, An YH, et al. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2017, 9(26):21639-21650.
doi: 10.1021/acsami.7b04114 |
[19] |
Ye J, Gong P. NGF-CS/HA-coating composite titanium facilitates the differentiation of bone marrow mesenchymal stem cells into osteoblast and neural cells[J]. Biochem Biophys Res Commun, 2020, 531(3):290-296.
doi: 10.1016/j.bbrc.2020.06.158 |
[20] | Cai MX, Li JH, Yue R, et al. Glycosylation of DMP1 maintains cranial sutures in mice[J]. J Oral Rehabil, 2020, 47(Suppl 1):19-28. |
[21] |
Kong JC, Wei B, Groth T, et al. Biomineralization improves mechanical and osteogenic properties of multilayer-modified PLGA porous scaffolds[J]. J Biomed Mater Res A, 2018, 106(10):2714-2725.
doi: 10.1002/jbm.a.36487 pmid: 30133124 |
[22] |
Elango J, Saravanakumar K, Rahman SU, et al. Chitosan-collagen 3D matrix mimics trabecular bone and regulates RANKL-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis[J]. Biomolecules, 2019, 9(5):173.
doi: 10.3390/biom9050173 |
[23] |
Croes M, Öner FC, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation[J]. Bone, 2016, 84:262-270.
doi: S8756-3282(16)00011-9 pmid: 26780388 |
[24] |
de Vries TJ, ElBakkali I, Kamradt T, et al. What are the peripheral blood determinants for increased osteoclast formation in the various inflammatory diseases associated with bone loss?[J]. Front Immunol, 2019, 10:505.
doi: 10.3389/fimmu.2019.00505 pmid: 30941138 |
[25] | Largo R, Roman-Blas JA, Moreno-Rubio J, et al. Chondroitin sulfate improves synovitis in rabbits with chronic antigen-induced arthritis[J]. Osteoarthritis Cartilage, 2010, 18(Suppl 1):S17-S23. |
[26] |
Bonito V, Smits AIPM, Goor OJGM, et al. Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers[J]. Acta Biomater, 2018, 71:247-260.
doi: S1742-7061(18)30115-6 pmid: 29518556 |
[27] |
Shen QS, Zhang CH, Mo HZ, et al. Fabrication of chondroitin sulfate calcium complex and its chondrocyte proliferation in vitro[J]. Carbohydr Polym, 2021, 254:117282.
doi: 10.1016/j.carbpol.2020.117282 |
[28] |
Shi HS, Ye XL, Zhang J, et al. Enhanced osteogenesis of injectable calcium phosphate bone cement mediated by loading chondroitin sulfate[J]. ACS Biomater Sci Eng, 2019, 5(1):262-271.
doi: 10.1021/acsbiomaterials.8b00871 |
[29] | 李筱媛, 葛少华. 支架材料的免疫反应对骨组织再生的影响[J]. 口腔医学, 2018, 38(9):834-838. |
[30] |
Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation[J]. Biofabrication, 2016, 8(3):035002.
doi: 10.1088/1758-5090/8/3/035002 |
[31] |
Cheng K, Zhu YL, Wang DQ, et al. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117:111368.
doi: 10.1016/j.msec.2020.111368 |
[32] |
Reginster JY, Veronese N. Highly purified chondroitin sulfate:A literature review on clinical efficacy and pharmacoeconomic aspects in osteoarthritis treatment[J]. Aging Clin Exp Res, 2021, 33(1):37-47.
doi: 10.1007/s40520-020-01643-8 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||