[1] |
Sui BD, Wu D, Xiang L, et al. Dental pulp stem cells: From discovery to clinical application[J]. J Endod, 2020, 46(9S): S46-S55.
|
[2] |
Silva PAO, Lima SMF, Freire MS, et al. Proteomic analysis of human dental pulp in different clinical diagnosis[J]. Clin Oral Investig, 2021, 25(5): 3285-3295.
|
[3] |
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions[J]. Nat Rev Mol Cell Biol, 2023, 24(2): 142-161.
|
[4] |
Zhang WW, Shen JL, Zhang S, et al. Silencing integrin α6 enhances the pluripotency-differentiation transition in human dental pulp stem cells[J]. Oral Dis, 2022, 28(3): 711-722.
|
[5] |
殷晓薇, 张爽, 邓皓天, 等. 整合素α6对hDPSCs增殖和成牙本质向分化的影响[J]. 口腔医学研究, 2020, 36(12): 1132-1136.
doi: 10.13701/j.cnki.kqyxyj.2020.12.012
|
[6] |
Gong T, Heng BC, Xu JG, et al. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth[J]. J Biomed Mater Res A, 2017, 105(4): 1083-1093.
doi: 10.1002/jbm.a.36003
pmid: 28076902
|
[7] |
Liao YY, Fang YR, Zhu HH, et al. Concentrated growth factors promote hBMSCs osteogenic differentiation in a co-culture system with HUVECs[J]. Front Bioeng Biotechnol, 2022, 10: 837295.
|
[8] |
于璐, 余少华, 熊宇, 等. 基于PI3K/AKT通路探究上调miR-210对牙髓干细胞增殖、凋亡能力的影响[J]. 现代生物医学进展, 2021, 21(7): 1212-1216.
|
[9] |
Pang XC, He X, Qiu ZW, et al. Targeting integrin pathways: Mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 1.
|
[10] |
Mishra S, Taelman J, Popovic M, et al. Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells[J]. Stem Cells, 2021, 39(5): 551-563.
doi: 10.1002/stem.3335
pmid: 33470497
|
[11] |
Kowalski-Chauvel A, Gouaze-Andersson V, Baricault L, et al. Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in glioblastoma stem cells resulting in enhanced proliferation and stemness[J]. Cancers, 2019, 11(3): 406.
|
[12] |
Yin Y, Tang QM, Xie MR, et al. Insights into the mechanism of vascular endothelial cells on bone biology[J]. Biosci Rep, 2021, 41(1): BSR20203258.
|
[13] |
Zhao JJ, He W, Zheng HQ, et al. Bone regeneration and angiogenesis by co-transplantation of angiotensin Ⅱ-pretreated mesenchymal stem cells and endothelial cells in early steroid-induced osteonecrosis of the femoral head[J]. Cell Transplant, 2022, 31: 9636897221086965.
|
[14] |
Liu X, Zhao NR, Liang HF, et al. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis[J]. J Orthop Translat, 2022, 37: 152-162.
|
[15] |
Mutschall H, Winkler S, Weisbach V, et al. Bone tissue engineering using adipose-derived stem cells and endothelial cells: Effects of the cell ratio[J]. J Cell Mol Med, 2020, 24(12): 7034-7043.
doi: 10.1111/jcmm.15374
pmid: 32394620
|
[16] |
Dissanayaka WL, Zhan X, Zhang CF, et al. Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro[J]. J Endod, 2012, 38(4): 454-463.
doi: 10.1016/j.joen.2011.12.024
pmid: 22414829
|
[17] |
Morito A, Kida Y, Suzuki K, et al. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells[J]. Arch Histol Cytol, 2009, 72(1): 51-64.
doi: 10.1679/aohc.72.51
pmid: 19789412
|
[18] |
Salkın H, Gönen ZB, Ergen E, et al. Effects of TGF-β1 overexpression on biological characteristics of human dental pulp-derived mesenchymal stromal cells[J]. Int J Stem Cells, 2019, 12(1): 170-182.
doi: 10.15283/ijsc18051
pmid: 30595006
|
[19] |
Pan G, Zhou QW, Pan CH, et al. The impact of the VEGF/VEGFR2/PI3K/AKT signaling axis on the proliferation and migration abilities of human dental pulp stem cells[J]. Cell Biochem Biophys, 2024, 82(3): 2787-2795.
doi: 10.1007/s12013-024-01394-7
pmid: 38987441
|
[20] |
Oh M, Zhang Z, Mantesso A, et al. Endothelial-initiated crosstalk regulates dental pulp stem cell self-renewal[J]. J Dent Res, 2020, 99(9): 1102-1111.
doi: 10.1177/0022034520925417
pmid: 32471313
|
[21] |
Pagella P, de Vargas Roditi L, Stadlinger B, et al. Notch signaling in the dynamics of perivascular stem cells and their niches[J]. Stem Cells Transl Med, 2021, 10(10): 1433-1445.
|
[22] |
Yang J, Hu Y, Wang L, et al. Human umbilical vein endothelial cells derived-exosomes promote osteosarcoma cell stemness by activating Notch signaling pathway[J]. Bioengineered, 2021, 12(2): 11007-11017.
doi: 10.1080/21655979.2021.2005220
pmid: 34781817
|
[23] |
Kobayashi T, Torii D, Iwata T, et al. Characterization of proliferation, differentiation potential, and gene expression among clonal cultures of human dental pulp cells[J]. Hum Cell, 2020, 33(3): 490-501.
doi: 10.1007/s13577-020-00327-9
pmid: 32180208
|
[24] |
Kim KP, Han DW, Kim J, et al. Biological importance of OCT transcription factors in reprogramming and development[J]. Exp Mol Med, 2021, 53(6): 1018-1028.
|
[25] |
Jung GA, Kim JA, Park HW, et al. Induction of Nanog in neural progenitor cells for adaptive regeneration of ischemic brain[J]. Exp Mol Med, 2022, 54(11): 1955-1966.
|
[26] |
孙雪飞. OCT4A选择性剪接体对人牙髓干细胞自我更新能力的调控作用[D]. 西安: 第四军医大学, 2017.
|
[27] |
宁艳洋, 李金铃, 徐琼. 转录因子Nanog过表达对人牙髓细胞增殖及多向分化能力的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 9(5): 357-363.
|
[28] |
Jauković A, Kukolj T, Trivanović D, et al. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF[J]. J Cell Physiol, 2021, 236(11): 7322-7341.
doi: 10.1002/jcp.30399
pmid: 33934350
|
[29] |
Luo LH, Zhang YN, Chen HY, et al. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells[J]. Cell Prolif, 2021, 54(2): e12969.
|
[30] |
Azar J, Bahmad HF, Daher D, et al. The use of stem cell-derived organoids in disease modeling: An update[J]. Int J Mol Sci, 2021, 22(14): 7667.
|