[1] |
Luo CF, Liu Y, Peng B, et al. PEEK for oral applications: Recent advances in mechanical and adhesive properties[J]. Polymers, 2023, 15(2): 386.
|
[2] |
Mehdizadeh Omrani M, Kumar H, Mohamed MGA, et al. Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(5): 622-629.
|
[3] |
Russo LL, Chochlidakis K, Caradonna G, et al. Removable partial dentures with polyetheretherketone framework: The influence on residual ridge stability[J]. J Prosthodont, 2022, 31(4): 333-340.
|
[4] |
Andrikopoulou E, Zoidis P, ArtopoulouⅡ, et al. Modified PEEK resin bonded fixed dental prosthesis for a young cleft lip and palate patient[J]. J Esthet Restor Dent, 2016, 28(4): 201-207.
doi: 10.1111/jerd.12221
pmid: 27273727
|
[5] |
陈昕, 毛渤淳, 鲁雨晴, 等. 钴铬合金和聚醚醚酮用于可摘局部义齿支架的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(5): 526-531.
|
[6] |
Unsal GS, Yusufoglu SI. Finite element analysis of endocrown and post-and-core abutments for removable partial dentures with different framework materials[J]. Int J Prosthodont, 2023, 36(2): 203-215.
|
[7] |
罗颐辰, 邱琳, 耿铭珠, 等. 不同设计的聚醚醚酮卡环固位及疲劳性能研究[J]. 口腔医学, 2024, 44(5): 369-374.
|
[8] |
LyuHX, Murakami N, Yamazaki T, et al. Evaluation of PEEK and zirconia occlusal rest designs for removable partial dentures based on finite element analysis[J]. J Prosthodont Res, 2023, 67(2): 196-205.
|
[9] |
Pordeus MD, Santiago Junior JF, Venante HS, et al. Computer-aided technology for fabricating removable partial denture frameworks: A systematic review and meta-analysis[J]. J Prosthet Dent, 2022, 128(3): 331-340.
|
[10] |
Ye HQ, Li XX, Wang GB, et al. A novel computer-aided design/computer-assisted manufacture method for one-piece removable partial denture and evaluation of fit[J]. Int J Prosthodont, 2018, 31(2): 149-151.
|
[11] |
Ichikawa T, Kurahashi K, Liu LP, et al. Use of a polyetheretherketone clasp retainer for removable partial denture: A case report[J]. Dent J, 2019, 7(1): 4.
|
[12] |
Muhsin SA, Hatton PV, Johnson A, et al. Determination of Polyetheretherketone(PEEK)mechanical properties as a denture material[J]. Saudi Dent J, 2019, 31(3): 382-391.
|
[13] |
Benli M, Eker Gümüş B, Kahraman Y, et al. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers[J]. Odontology, 2020, 108(2): 240-250.
doi: 10.1007/s10266-019-00463-1
pmid: 31612354
|
[14] |
陆伟, 李涤尘, 吴国锋. 3D打印聚醚醚酮口腔修复体的初步临床报告[J]. 实用口腔医学杂志, 2020, 36(1): 136-140.
|
[15] |
金智文, 韩建民, 刘云松, 等. 聚醚醚酮制作可摘义齿人工牙耐磨性及硬度的研究[J]. 口腔颌面修复学杂志, 2018, 19(4): 236-240.
|
[16] |
鲁雨晴, 闵婕, 陈昕, 等. 整体切削的聚醚醚酮可摘局部义齿即刻修复1例[J]. 国际口腔医学杂志, 2020, 47(3): 297-303.
|
[17] |
李欣欣, 柳玉树, 孙玉春, 等. 计算机辅助设计与制作一体化聚醚醚酮可摘局部义齿不同形态组件的适合性评价[J]. 北京大学学报(医学版), 2019, 51(2): 335-339.
doi: 10.19723/j.issn.1671-167X.2019.02.025
|
[18] |
何光霁, 张文云. 聚醚醚酮在口腔修复学中的应用[J]. 口腔医学, 2017, 37(10): 957-960.
|
[19] |
Ding L, Chen X, Zhang JQ, et al. Digital fabrication of a maxillary obturator prosthesis by using a 3-dimensionally-printed polyetheretherketone framework[J]. J Prosthet Dent, 2023, 129(1): 230-233.
|
[20] |
Villefort RF, Tribst JPM, Dal Piva AMO, et al. Stress distribution on different bar materials in implant-retained palatal obturator[J]. PLoS One, 2020, 15(10): e0241589.
|
[21] |
Tasopoulos T, Chatziemmanouil D, Kouveliotis G, et al. PEEK maxillary obturator prosthesis fabrication using intraoral scanning, 3D printing, and CAD/CAM[J]. Int J Prosthodont, 2020, 33(3): 333-340.
doi: 10.11607/ijp.6575
pmid: 32320188
|
[22] |
米莲, 柏娜. 3D打印聚醚醚酮及复合材料在口腔医学领域的研究进展[J]. 暨南大学学报(自然科学与医学版), 2022, 43(6): 616-622,642.
|
[23] |
赵家祝, 张文云. 聚醚醚酮用于固定修复的研究进展[J]. 口腔材料器械杂志, 2018, 27(4): 221-224.
|
[24] |
Haleem A, Javaid M. Polyether ether ketone(PEEK)and its manufacturing of customised 3D printed dentistry parts using additive manufacturing[J]. Clin Epidemiol Glob Health, 2019, 7(4): 654-660.
|
[25] |
Li Y, Lou Y. Tensile and bending strength improvements in PEEK parts using fused deposition modelling 3D printing considering multi-factor coupling[J]. Polymers, 2020, 12(11): 2497.
|
[26] |
Wang P, Zou B, Xiao HC, et al. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK[J]. J Mater Process Technol, 2019, 271: 62-74.
|
[27] |
孙铁锋, 高志惠, 王平, 等. 3D打印技术在医疗领域的研究进展[J]. 精准医学杂志, 2018, 33(2): 177-180.
|
[28] |
童和平, 李达人, 丘永亮. 基于熔融沉积成型3D打印模型表面质量的研究[J]. 机电工程技术, 2019, 48(12): 112-114.
|
[29] |
Wang P, Zou B, Ding SL, et al. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK[J]. Chin J Aeronaut, 2021, 34(9): 236-246.
|
[30] |
郭芳, 黄硕, 刘宁, 等. 三维打印纳米二氧化钛/聚醚醚酮复合材料的生物力学性能[J]. 山西医科大学学报, 2021, 52(6): 748-752.
|
[31] |
Rivard CH, Rhalmi S, Coillard C. Biocompatibility testing of peek polymer for a spinal implant system: A study in rabbits[J]. J Biomed Mater Res, 2002, 62(4): 488-498.
|
[32] |
Emera RMK, Abdallah RM. Denture base adaptation, retention, and mechanical properties of BioHPP versus nano-alumina-modified polyamide resins[J]. J Dent Res Dent Clin Dent Prospects, 2021, 15(4): 239-246.
|
[33] |
Bousiakou LG, Qindeel R, Al-Dossary OM, et al. Synthesis and characterization of graphene oxide(GO)sheets for pathogen inhibition: Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa[J]. J King Saud Univ Sci, 2022, 34(4): 102002.
|
[34] |
庞祎. 纳米银改性BioHPP基托材料的制备及抗菌性能研究[D]. 郑州: 郑州大学, 2022: 1-51.
|
[35] |
Pezzotti G, Marin E, Adachi T, et al. Incorporating Si3 N4 into PEEK to produce antibacterial, osteocondutive, and radiolucent spinal implants[J]. Macromol Biosci, 2018, 18(6): e1800033.
|
[36] |
Delaney LJ, MacDonald D, Leung J, et al. Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations[J]. Acta Biomater, 2019, 93: 12-24.
doi: S1742-7061(19)30154-0
pmid: 30826477
|
[37] |
Ye HQ, Wang ZX, Sun YC, et al. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects[J]. J Prosthet Dent, 2021, 126(2): 257-261.
doi: 10.1016/j.prosdent.2020.05.026
pmid: 32919758
|
[38] |
Yadav HM, Kim JS, Pawar SH. Developments in photocatalytic antibacterial activity of nano TiO2: A review[J]. Korean J Chem Eng, 2016, 33(7): 1989-1998.
|
[39] |
郭芳, 陈兆社, 黄硕, 等. 熔融沉积成型氧化钛/聚醚醚酮可摘局部义齿的适合性初探[J]. 中国实用口腔科杂志, 2022, 15(4): 458-461.
|
[40] |
Zoidis P, Papathanasiou I, Polyzois G. The use of a modified poly-ether-ether-ketone(PEEK)as an alternative framework material for removable dental prostheses: A clinical report[J]. J Prosthodont, 2016, 25(7): 580-584.
|
[41] |
陆伟, 陈晞, 冀堃, 等. 一体化双色3D打印聚醚醚酮口腔修复体的初步临床报告[J]. 实用口腔医学杂志, 2020, 36(3): 548-552.
|
[42] |
Papathanasiou I, Papavasiliou G, Kamposiora P, et al. Effect of staining solutions on color stability, gloss and surface roughness of removable partial dental prosthetic polymers[J]. J Prosthodont, 2022, 31(1): 65-71.
|
[43] |
Le Bars P, Bandiaky ON, Le Guéhennec L, et al. Different polymers for the base of removable dentures? part Ⅰ: A narrative review of mechanical and physical properties[J]. Polymers, 2023, 15(17): 3495.
|
[44] |
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32): 4845-4869.
doi: 10.1016/j.biomaterials.2007.07.013
pmid: 17686513
|
[45] |
Liu YC, Fang M, Zhao RF, et al. Clinical applications of polyetheretherketone in removable dental prostheses: Accuracy, characteristics, and performance[J]. Polymers, 2022, 14(21): 4615.
|